阅读AuTO利用深度强化学习自动优化数据中心流量工程(一)

2023-05-28,,

目录

问题
解决方法
模型选择
框架构建

Sigcomm'18

AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization

问题

主要问题流量算法的配置周期长,人工配置难且繁复。人工配置的时间成本大,人为错误导致的性能降低。

要计算MLFQ的阈值参数是很麻烦的事情,先前有人构建了一个数学模型来优化这个阈值,在几个星期或者几个月更新一次阈值,更新周期过长。

可以使用DRL(Deep Reinforcement Learning)的方法根据环境自动配置(决策)算法参数,减少人工配置的时间成本,减少人为错误导致的性能降低。

基于主流框架TensorFlow或是pytorch等框架的的DRL难以掌控TO(traffic optimization)的小流(速度过快)

使用DRL优化时遇见的问题:DRL配置TO时,由于小流通过速度大于配置下发的速度,所以来不及下发配置。

解决方法

优化的算法:采用 Multi-Level Feedback Queueing(MLFQ)来管理流。第一级别的队列为小流,所有流初始化为小流。当流的大小超过阈值时,判定为大流,在队列中被降级到第二队列。可以有k个队列,按照流的不同级别分在不同的队列当中。

决策参数:基于比特数和阈值来对每个流做出决策,判定流属于第几级别的队列。

评价参数:当一次流处理完成时,计算一个比率,比率为本次的吞吐量与前一次的吞吐量之比。 吞吐量Sizef(流长)与FCT(Flow completion time)之比。

使用DRL优化:使用强化学习优化阈值。根据结果反馈调整阈值的设定。

状态和奖励返回是随机的马尔科夫过程

模型选择

公式一

公式一的改进:公式二

算法主要使用公式二

公式二的相关解释

算法

论文从强化学习的算法PG讲到DPG再讲到DDPG,最后使用了DDPG。

经过查询资料,DDPG使用了深度神经网络,并且针对的是决策值为连续的情况,而参数值的变化又是连续的,所以使用DDPG较为合适且有效。

当一次流处理完成时,计算一个比率,比率为本次的吞吐量与前一次的吞吐量之比。 吞吐量Sizef(流长)与FCT(Flow completion time)之比。

框架构建

模型组成:

边缘系统
中心系统

边缘系统

有一个MLFQ,首级队列为小流,当流超过阈值,判定为大流,在队列中被降级。

边缘系统分为增强模块探测模块

探测模块:获取流的状态信息(包括所有流的大小和处理完成的时间)
增强模块:获取中心系统的action,执行操作。

中心系统

其中的DRL有两个agent:

sRLA(short Reinforcement Learning Agent): 优化小流阈值
lRLA(long Reinforcement Learning Agent):优化大流,速率、路由、优先级

阅读AuTO利用深度强化学习自动优化数据中心流量工程(一)的相关教程结束。

《阅读AuTO利用深度强化学习自动优化数据中心流量工程(一).doc》

下载本文的Word格式文档,以方便收藏与打印。