深度学习-05(tensorflow模型保存与加载、文件读取、图像分类:手写体识别、服饰识别)

2023-08-01,,

文章目录

深度学习-05
模型保存于加载
什么是模型保存与加载
模型保存于加载API
案例1:模型保存/加载
读取数据
文件读取机制
文件读取API
案例2:CSV文件读取
图片文件读取API
案例3:图片文件读取
图像识别
手写体识别
MNIST数据集
任务目标
网络结构
相关API
关键代码
执行结果
案例4:实现手写体识别
服饰识别
数据集介绍
任务目标
网络结构
关键代码
案例5:实现服饰识别

深度学习-05

模型保存于加载

什么是模型保存与加载

模型保存于加载API

案例1:模型保存/加载

# 模型保存示例
import tensorflow as tf
import os # 第一步:创建数据
x = tf.random_normal([100, 1], mean=1.75, stddev=0.5, name="x_data")
y_true = tf.matmul(x, [[2.0]]) + 5.0 # 矩阵相乘必须是二维的 # 第二步:建立线性回归模型
# 建立模型时,随机建立权重、偏置 y = wx + b
# 权重需要不断更新,所以必须是变量类型. trainable指定该变量是否能随梯度下降一起变化
weight = tf.Variable(tf.random_normal([1, 1], name="w"),
trainable=True) # 训练过程中值是否允许变化
bias = tf.Variable(0.0, name="b", trainable=True) # 偏置
y_predict = tf.matmul(x, weight) + bias # 计算 wx + b # # 第三步:求损失函数,误差(均方差)
loss = tf.reduce_mean(tf.square(y_true - y_predict)) # # 第四步:使用梯度下降法优化损失
# 学习率是比价敏感的参数,过小会导致收敛慢,过大可能导致梯度爆炸
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 收集损失值
tf.summary.scalar("losses", loss)
merged = tf.summary.merge_all() #将所有的摘要信息保存到磁盘 init_op = tf.global_variables_initializer() saver = tf.train.Saver() #实例化Saver
with tf.Session() as sess: # 通过Session运行op
sess.run(init_op)
print("weight:", weight.eval(), " bias:", bias.eval()) # 打印初始权重、偏移值
fw = tf.summary.FileWriter("../summary/", graph=sess.graph) # 指定事件文件
# 训练之前,加载之前训练的模型,覆盖之前的参数
if os.path.exists("../model/linear_model/checkpoint"):
saver.restore(sess, "../model/linear_model/") for i in range(500): # 循环执行训练
sess.run(train_op) # 执行训练
summary = sess.run(merged) # 运行合并后的tensor
fw.add_summary(summary, i)
print(i, ":", i, "weight:", weight.eval(), " bias:", bias.eval()) saver.save(sess, "../model/linear_model/")

读取数据

文件读取机制

文件读取API

案例2:CSV文件读取

# csv文件读取示例
import tensorflow as tf
import os
def csv_read(filelist):
# 2. 构建文件队列
file_queue = tf.train.string_input_producer(filelist)
# 3. 构建csv reader,读取队列内容(一行)
reader = tf.TextLineReader()
k, v = reader.read(file_queue)
# 4. 对每行内容进行解码
## record_defaults:指定每一个样本每一列的类型,指定默认值
records = [["None"], ["None"]]
example, label = tf.decode_csv(v, record_defaults=records) # 每行两个值
# 5. 批处理
# batch_size: 跟队列大小无关,只决定本批次取多少数据
example_bat, label_bat = tf.train.batch([example, label],
batch_size=9,
num_threads=1,
capacity=9)
return example_bat, label_bat if __name__ == "__main__":
# 1. 找到文件,构造一个列表
dir_name = "./test_data/"
file_names = os.listdir(dir_name)
file_list = []
for f in file_names:
file_list.append(os.path.join(dir_name, f)) # 拼接目录和文件名 example, label = csv_read(file_list)
# 开启session运行结果
with tf.Session() as sess:
coord = tf.train.Coordinator() # 定义线程协调器
# 开启读取文件线程
# 调用 tf.train.start_queue_runners 之后,才会真正把tensor推入内存序列中
# 供计算单元调用,否则会由于内存序列为空,数据流图会处于一直等待状态
# 返回一组线程
threads = tf.train.start_queue_runners(sess, coord=coord)
print(sess.run([example, label])) # 打印读取的内容
# 回收线程
coord.request_stop()
coord.join(threads)

图片文件读取API

案例3:图片文件读取

# 图片文件读取示例
import tensorflow as tf
import os def img_read(filelist):
# 1. 构建文件队列
file_queue = tf.train.string_input_producer(filelist)
# 2. 构建reader读取文件内容,默认读取一张图片
reader = tf.WholeFileReader()
k, v = reader.read(file_queue) # 3. 对每行内容进行解码
img = tf.image.decode_jpeg(v) # 每行两个值 # 4. 批处理, 图片需要处理成统一大小
img_resized = tf.image.resize(img, [200, 200]) # 200*200
img_resized.set_shape([200, 200, 3]) # 固定样本形状,批处理时对数据形状有要求
img_bat = tf.train.batch([img_resized],
batch_size=10,
num_threads=1)
return img_bat if __name__ == "__main__":
# 1. 找到文件,构造一个列表
dir_name = "../data/test_img/"
file_names = os.listdir(dir_name)
file_list = []
for f in file_names:
file_list.append(os.path.join(dir_name, f)) # 拼接目录和文件名
imgs = img_read(file_list)
# 开启session运行结果
with tf.Session() as sess:
coord = tf.train.Coordinator() # 定义线程协调器
# 开启读取文件线程
# 调用 tf.train.start_queue_runners 之后,才会真正把tensor推入内存序列中
# 供计算单元调用,否则会由于内存序列为空,数据流图会处于一直等待状态
# 返回一组线程
threads = tf.train.start_queue_runners(sess, coord=coord)
# print(sess.run([imgs])) # 打印读取的内容
imgs = imgs.eval() # 回收线程
coord.request_stop()
coord.join(threads) ## 显示图片
print(imgs.shape)
import matplotlib.pyplot as plt plt.figure("Img Show", facecolor="lightgray") for i in range(10):
plt.subplot(2, 5, i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(imgs[i].astype("int32")) plt.tight_layout()
plt.show()

图像识别

手写体识别

MNIST数据集

任务目标

网络结构

相关API

关键代码

执行结果

案例4:实现手写体识别

# 手写体识别
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import pylab # 读入数据集(如果没有则在线下载),并转换成独热编码
# 如果不能下载,则到http://yann.lecun.com/exdb/mnist/进行手工下载,下载后拷贝到当前MNIST_data目录下
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) # 占位符,输入
y = tf.placeholder(tf.float32, [None, 10]) # 占位符,输出 W = tf.Variable(tf.random_normal([784, 10])) # 权重
b = tf.Variable(tf.zeros([10])) # 偏置值 # 构建模型
pred_y = tf.nn.softmax(tf.matmul(x, W) + b) # softmax分类
print("pred_y.shape:", pred_y.shape)
# 损失函数
cross_entropy = -tf.reduce_sum(y * tf.log(pred_y),
reduction_indices=1) # 求交叉熵
cost = tf.reduce_mean(cross_entropy) # 求损失函数平均值 # 参数设置
lr = 0.01
# 梯度下降优化器
optimizer = tf.train.GradientDescentOptimizer(lr).minimize(cost) training_epochs = 200
batch_size = 100
saver = tf.train.Saver()
model_path = "../model/mnist/mnist_model.ckpt" # 模型路径 # 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 循环开始训练
for epoch in range(training_epochs):
avg_cost = 0.0
total_batch = int(mnist.train.num_examples / batch_size) # 计算总批次 # 遍历全数据集
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 读取一个批次样本
params = {x: batch_xs, y: batch_ys} # 训练参数 o, c = sess.run([optimizer, cost], feed_dict=params) # 执行训练 avg_cost += (c / total_batch) # 求平均损失值 print("epoch: %d, cost=%.9f" % (epoch + 1, avg_cost)) print("Finished!") # 模型评估
correct_pred = tf.equal(tf.argmax(pred_y, 1), tf.argmax(y, 1))
# 计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
print("accuracy:", accuracy.eval({x: mnist.test.images,
y: mnist.test.labels}))
# 将模型保存到文件
save_path = saver.save(sess, model_path)
print("Model saved:", save_path) # 测试模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, model_path) # 加载模型 batch_xs, batch_ys = mnist.test.next_batch(2) # 读取2个测试样本
output = tf.argmax(pred_y, 1) # 预测结果值 output_val, predv = sess.run([output, pred_y], # 操作
feed_dict={x: batch_xs}) # 参数 print("预测结论:\n", output_val, "\n")
print("实际结果:\n", batch_ys, "\n")
print("预测概率:\n", predv, "\n") # 显示图片
im = batch_xs[0] # 第1个测试样本数据
im = im.reshape(-1, 28)
pylab.imshow(im)
pylab.show() im = batch_xs[1] # 第2个测试样本数据
im = im.reshape(-1, 28)
pylab.imshow(im)
pylab.show()

服饰识别

数据集介绍

任务目标

网络结构

关键代码

案例5:实现服饰识别

# 在fashion_mnist数据集实现服饰识别
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets class FashionMnist():
out_featrues1 = 12 # 第一个组卷积池化层输出特征数量(等于第一个卷积层卷积核数量)
out_featrues2 = 24 # 第二个组卷积池化层输出特征数量(等于第二个卷积层卷积核数量)
con_neurons = 512 # 全连接层神经元数量 def __init__(self, path):
"""
构造方法
:param path:指定数据集路径
:return:
"""
self.sess = tf.Session() # 会话
self.data = read_data_sets(path, one_hot=True) # 读取样本文件对象 def init_weight_variable(self, shape):
"""
初始化权重方法
:param shape:指定初始化张量的形状
:return:经过初始化后的张量
"""
inital = tf.truncated_normal(shape, stddev=0.1) # 截尾正态分布
return tf.Variable(inital) def init_bias_variable(self, shape):
"""
初始化偏置
:param shape:指定初始化张量的形状
:return:经过初始化后的张量
"""
inital = tf.constant(1.0, shape=shape)
return tf.Variable(inital) def conv2d(self, x, w):
"""
二维卷积方法
:param x:原始数据
:param w:卷积核
:return:返回卷积后的结果
"""
# input : 输入数据[batch, in_height, in_width, in_channels]
# filter : 卷积窗口[filter_height, filter_width, in_channels, out_channels]
# strides: 卷积核每次移动步数,对应着输入的维度方向
# padding='SAME' : 输入和输出的张量形状相同
return tf.nn.conv2d(x, # 原始数据
w, # 卷积核
strides=[1, 1, 1, 1], # 各个维度上的步长值
padding="SAME") # 输入和输出矩阵大小相同 def max_pool_2x2(self, x):
"""
池化函数
:param x:原始数据
:return:池化后的数据
"""
return tf.nn.max_pool(x,# 原始数据
ksize=[1, 2, 2, 1], # 池化区域大小
strides=[1, 2, 2, 1], # 各个维度上的步长值
padding="SAME") def create_conv_pool_layer(self, input, input_features, out_features):
"""
卷积、激活、池化层
:param input:原始数据
:param input_features:输入特征数量
:param out_features:输出特征数量
:return:卷积、激活、池化层后的数据
"""
filter = self.init_weight_variable([5, 5, input_features, out_features])#卷积核
b_conv = self.init_bias_variable([out_features]) # 偏置,数量和卷积输出大小一致 h_conv = tf.nn.relu(self.conv2d(input, filter) + b_conv)#卷积,结果做relu激活
h_pool = self.max_pool_2x2(h_conv) #对激活操作输出做max池化
return h_pool def create_fc_layer(self, h_pool_flat, input_featrues, con_neurons):
"""
创建全连接层
:param h_pool_flat:输入数据,经过拉伸后的一维张量
:param input_featrues:输入特征大小
:param con_neurons:神经元数量
:return:全连接
"""
w_fc = self.init_weight_variable([input_featrues, con_neurons])#输出数量等于神经元数量
b_fc = self.init_bias_variable([con_neurons]) #偏置数量等于输出数量
h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, w_fc) + b_fc) #计算wx+b并且做relu激活
return h_fc1 def build(self):
"""
组建CNN
:return:
"""
# 输入数据,N个28*28经过拉伸后的张量
self.x = tf.placeholder(tf.float32, shape=[None, 784])
x_image = tf.reshape(self.x, [-1, 28, 28, 1]) # 28*28单通道
self.y_ = tf.placeholder(tf.float32, shape=[None, 10]) # 标签,对应10个类别
# 第一组卷积池化层
h_pool1 = self.create_conv_pool_layer(x_image, 1, self.out_featrues1)
# 第二组卷积池化层
h_pool2 = self.create_conv_pool_layer(h_pool1, # 上一层输出作为输入
self.out_featrues1, # 上一层输出特征数量作为输入特征数量
self.out_featrues2)# 第二层输出特征数量
# 全连接层
h_pool2_flat_features = 7 * 7 * self.out_featrues2 # 计算特征点数量
h_pool2_flat = tf.reshape(h_pool2, [-1, h_pool2_flat_features])#拉升成一维张量
h_fc = self.create_fc_layer(h_pool2_flat, # 输入
h_pool2_flat_features, # 输入特征数量
self.con_neurons) # 输出特征数量
# dropout层(通过随机丢弃一部分神经元的更新,防止过拟合)
self.keep_prob = tf.placeholder("float") # 丢弃率
h_fc1_drop = tf.nn.dropout(h_fc, self.keep_prob)
# 输出层
w_fc = self.init_weight_variable([self.con_neurons, 10])#512行10列,产生10个输出
b_fc = self.init_bias_variable([10]) # 10个偏置
y_conv = tf.matmul(h_fc1_drop, w_fc) + b_fc # 计算wx+b, 预测结果 # 评价
correct_prediction = tf.equal(tf.argmax(y_conv, 1),#取出预测概率中最大的值的索引
tf.argmax(self.y_, 1))#取出真实概率中最大的值的索引
# 将上一步得到的bool类型数组转换为浮点型,并求准确率
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 损失函数
loss_func = tf.nn.softmax_cross_entropy_with_logits(labels=self.y_,#真实值
logits=y_conv)#预测值
cross_entropy = tf.reduce_mean(loss_func)
# 优化器
optimizer = tf.train.AdamOptimizer(0.001)
self.train_step = optimizer.minimize(cross_entropy) def train(self):
self.sess.run(tf.global_variables_initializer()) #初始化
merged = tf.summary.merge_all() #摘要合并 batch_size = 100
print("beging training...") for i in range(10): # 迭代训练
total_batch = int(self.data.train.num_examples / batch_size)#计算批次数量 for j in range(total_batch):
batch = self.data.train.next_batch(batch_size)#获取一个批次样本
params = {self.x: batch[0], self.y_:batch[1],#输入、标签
self.keep_prob: 0.5} #丢弃率 t, acc = self.sess.run([self.train_step, self.accuracy],# op
params) # 喂入参数
if j % 100 == 0:
print("epoch: %d, pass: %d, acc: %f" % (i, j, acc))
# 评价
def eval(self, x, y, keep_prob):
params = {self.x: x, self.y_: y, self.keep_prob: 1.0}
test_acc = self.sess.run(self.accuracy, params)
print('Test accuracy %f' % test_acc)
return test_acc # 关闭会话
def close(self):
self.sess.close() if __name__ == "__main__":
mnist = FashionMnist('FASHION_MNIST_data/')
mnist.build()
mnist.train() print('\n----- Test -----')
xs, ys = mnist.data.test.next_batch(100)
mnist.eval(xs, ys, 0.5)
mnist.close()

深度学习-05(tensorflow模型保存与加载、文件读取、图像分类:手写体识别、服饰识别)的相关教程结束。

《深度学习-05(tensorflow模型保存与加载、文件读取、图像分类:手写体识别、服饰识别).doc》

下载本文的Word格式文档,以方便收藏与打印。