代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度  222.完全二叉树的节点个数

2023-07-31,,

代码随想录算法训练营

代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度  222.完全二叉树的节点个数

104.二叉树的最大深度

题目链接:104.二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例: 给定二叉树 [3,9,20,null,null,15,7],返回最大深度3

总体思路

递归法

使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。

这一点其实是很多同学没有想清楚的,很多题解同样没有讲清楚。

我先用后序遍历(左右中)来计算树的高度。

    确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回这棵树的深度,所以返回值为int类型。

    代码实现:

int getdepth(treenode* node)
    确定终止条件:如果为空节点的话,就返回0,表示高度为0。
if(node==NULL) return 0;
    确定单层递归的逻辑:先求它的左子树的深度,再求右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。
int leftdepth=getdepth(node->left);    //左
int rightdepth=getdepth(node->right); //右
int depth=1+max(leftdepth,rightdepth); //根
return depth;

整体代码:

class solution{
public:
int getdepth(treenode* node){
if(node==NULL) return 0;
int leftdepth=getdepth(node->left); //左
int rightdepth=getdepth(node->right); //右
int depth=1+max(leftdepth,rightdepth); //中
return depth;
}
int maxdepth(treenode* root){
return getdepth(root);
}
};

精简后代码:

class solution{
public:
int maxdepth(treenode* node){
if(root==NULL) return 0;
retrun 1+max(maxdepth(node->left),maxdepth(node->right));
}
};

精简之后的代码根本看不出是那种遍历方式,也看不出递归三部曲的步骤,所以如果对二叉树的操作还不熟练,尽量不奥直接按照精简代码来学。

前序代码实现

谦虚代码充分表现出求深度回溯的过程

class solution {
public:
int result;
void getdepth(treenode* node, int depth) {
result = depth > result ? depth : result; // 中 if (node->left == NULL && node->right == NULL) return ; if (node->left) { // 左
depth++; // 深度+1
getdepth(node->left, depth);
depth--; // 回溯,深度-1
}
if (node->right) { // 右
depth++; // 深度+1
getdepth(node->right, depth);
depth--; // 回溯,深度-1
}
return ;
}
int maxdepth(treenode* root) {
result = 0;
if (root == NULL) return result;
getdepth(root, 1);
return result;
}
};

代码简化如下:

class solution {
public:
int result;
void getdepth(treenode* node, int depth) {
result = depth > result ? depth : result; // 中
if (node->left == NULL && node->right == NULL) return ;
if (node->left) { // 左
getdepth(node->left, depth + 1);
}
if (node->right) { // 右
getdepth(node->right, depth + 1);
}
return ;
}
int maxdepth(treenode* root) {
result = 0;
if (root == 0) return result;
getdepth(root, 1);
return result;
}
};

迭代法

迭代法使用层序遍历,一层一层遍历二叉树

代码如下:

class solution {
public:
int maxdepth(treenode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<treenode*> que;
que.push(root);
while(!que.empty()) {
int size = que.size();
depth++; // 记录深度
for (int i = 0; i < size; i++) {
treenode* node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return depth;
}
};

559.n叉树的最大深度

题目链接:559.n叉树的最大深度

给定一个 N 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。

总体思路

和二叉树相同

递归法代码实现:

class solution {
public:
int maxdepth(node* root) {
if (root == 0) return 0;
int depth = 0;
for (int i = 0; i < root->children.size(); i++) {
depth = max (depth, maxdepth(root->children[i]));
}
return depth + 1;
}
};

迭代法实现:

class solution {
public:
int maxdepth(node* root) {
queue<node*> que;
if (root != NULL) que.push(root);
int depth = 0;
while (!que.empty()) {
int size = que.size();
depth++; // 记录深度
for (int i = 0; i < size; i++) {
node* node = que.front();
que.pop();
for (int j = 0; j < node->children.size(); j++) {
if (node->children[j]) que.push(node->children[j]);
}
}
}
return depth;
}
};

111.二叉树的最小深度

题目链接:111.二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],返回最小深度2.

总体思路

本题依然是前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。

二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

那么使用后序遍历,其实求的是根节点到叶子节点的最小距离,就是求高度的过程,不过这个最小距离 也同样是最小深度。

以下讲解中遍历顺序上依然采用后序遍历(因为要比较递归返回之后的结果,本文我也给出前序遍历的写法)。

如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度。

反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。

代码如下:

int leftDepth = getDepth(node->left);           // 左
int rightDepth = getDepth(node->right); // 右
// 中
// 当一个左子树为空,右不为空,这时并不是最低点
if (node->left == NULL && node->right != NULL) { 
    return 1 + rightDepth;
}   
// 当一个右子树为空,左不为空,这时并不是最低点
if (node->left != NULL && node->right == NULL) { 
    return 1 + leftDepth;
}
int result = 1 + min(leftDepth, rightDepth);
return result;

222.完全二叉树的节点个数

题目链接:222.完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

输入:root = [1,2,3,4,5,6]

输出:6

普通二叉树思路

首先按照普通二叉树的逻辑来求。

这道题目的递归法和求二叉树的深度写法类似, 而迭代法,二叉树:层序遍历登场!遍历模板稍稍修改一下,记录遍历的节点数量就可以了。

递归遍历的顺序依然是后序(左右中)。

递归代码实现

class solution {
public:
int getNodeNum(TreeNode* cur){
if(cur==NULL) return 0;
int leftNum =getNodeNum(cur->left);
int rightNum=genNodeNum(cur->right);
int treeNum=leftNum+rightNum+1;
}
public:
class CountNodes(TreeNode* root){
return getNodeNum(root);
}
};

精简代码:

class solution{
public:
int countNodes(TreeNode* root) {
if (root == NULL) return 0;
return 1 + countNodes(root->left) + countNodes(root->right);
}
}

完全二叉树思路

完全二叉树

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

这里关键在于如何去判断一个左子树或者右子树是不是满二叉树呢?

在完全二叉树中,如果递归向左遍历的深度等于递归向右遍历的深度,那说明就是满二叉树。如图:

以下不是完全二叉树:

判断其子树是不是满二叉树,如果是则利用公式计算这个子树(满二叉树)的节点数量,如果不是则继续递归,那么 在递归三部曲中,第二部:终止条件的写法应该是这样的:

if (root == nullptr) return 0;
// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) { // 求左子树深度
left = left->left;
leftDepth++;
}
while (right) { // 求右子树深度
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,返回满足满二叉树的子树节点数量
}

整体代码为

class Solution {
public:
int countNodes(TreeNode* root) {
if (root == nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) { // 求左子树深度
left = left->left;
leftDepth++;
}
while (right) { // 求右子树深度
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root->left) + countNodes(root->right) + 1;
}
};

补充:[C++栈使用(stack容器)](C++ stack(STL stack)用法详解 (biancheng.net))

stack

stack 容器有广泛的应用。例如,编辑器中的 undo (撤销)机制就是用堆栈来记录连续的变化。撤销操作可以取消最后一个操作,这也是发生在堆栈顶部的操作。编译器使用堆栈来解析算术表达式,当然也可以用堆栈来记录 C++ 代码的函数调用。下面展示了如何定义一个用来存放字符串对象的 stack 容器:

1.  std::stack<std::string> words;

stack 容器适配器的模板有两个参数。第一个参数是存储对象的类型,第二个参数是底层容器的类型。stack<T> 的底层容器默认是 deque<T> 容器,因此模板类型其实是 stack<typename T, typename Container=deque<T>>。通过指定第二个模板类型参数,可以使用任意类型的底层容器,只要它们支持 back()、push_back()、pop_back()、empty()、size() 这些操作。下面展示了如何定义一个使用 list<T> 的堆栈:

1.  std::stack<std::string,std::list<std::string>> fruit;

堆栈操作

和其他序列容器相比,stack 是一类存储机制简单、所提供操作较少的容器。下面是 stack 容器可以提供的一套完整操作:

top():返回一个栈顶元素的引用,类型为 T&。如果栈为空,返回值未定义。
push(const T& obj):可以将对象副本压入栈顶。这是通过调用底层容器的 push_back() 函数完成的。
push(T&& obj):以移动对象的方式将对象压入栈顶。这是通过调用底层容器的有右值引用参数的 push_back() 函数完成的。
pop():弹出栈顶元素。
size():返回栈中元素的个数。
empty():在栈中没有元素的情况下返回 true。
emplace():用传入的参数调用构造函数,在栈顶生成对象。
swap(stack<T> & other_stack):将当前栈中的元素和参数中的元素交换。参数所包含元素的类型必须和当前栈的相同。对于 stack 对象有一个特例化的全局函数 swap() 可以使用。

代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度  222.完全二叉树的节点个数的相关教程结束。

《代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度  222.完全二叉树的节点个数.doc》

下载本文的Word格式文档,以方便收藏与打印。