【BZOJ2693】jzptab(莫比乌斯反演)

2022-10-17,

不妨先设\(n<=m\)

把题目的柿子推一下:

\[\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\]

由于\(lcm(i,j)*gcd(i,j)=ij\)

\[=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{gcd(i,j)}\]

\(d=gcd(i,j)\),我们枚举\(d\),提到最前面,再枚举\(i\)\(d\)的几倍、\(j\)\(d\)的几倍。

\[=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}\frac{(d\times i)\times (d\times j)}{d}[gcd((d\times i),(d\times j))=d]\]

则在上面这个柿子中,\((d\times i)\)为原来的\(i\)\((d\times j)\)为原来的\(j\)。将分式化简,\(gcd(d\times i,d\times j)=d\)里同时约掉一个\(d\)得:

\[=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}d\times i\times j[gcd(i,j)=1]\]

考虑到\(\sum_{i|n}\mu(i)=[n=1]\),代入\([gcd(i,j)=1]\)得:

\[=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} i\times j\sum_{k|gcd(i,j)}\mu(k)\]

我们再次枚举\(k\),提到\(\sum_{d=1}^n\)后:

\[=\sum_{d=1}^n d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor}\mu(k)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}i\times j[k|gcd(i,j)]\]

考虑到\([k|gcd(i,j)]\)即为\([k|i,k|j]\)

\[=\sum_{d=1}^n d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor}\mu(k)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}i[k|i]\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}j[k|j] \tag{1}\]

这时我们先推另一个柿子:\(\sum_{i=1}^n[k|i]\),也就是询问\(1\)~\(n\)这些数中有多少个数是\(k\)的倍数,答案显然是\(\lfloor \frac{n}{k} \rfloor\)

但如果是求\(\sum_{i=1}^ni[k|i]\)呢?

也就是吧所有\(1\)~\(n\)中所有是\(k\)的倍数的数加起来,答案显然就是\[1\times k+2\times k+...+\lfloor \frac{n}{k} \rfloor \times k=(1+2+...+\lfloor \frac{n}{k} \rfloor)\times k=\frac{(1+\lfloor \frac{n}{k} \rfloor)\times \lfloor \frac{n}{k} \rfloor \times k}{2}\]

把这个代入\((1)\)

\[=\sum_{d=1}^n d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor}\mu(k)\times\frac{(1+\lfloor \frac{\lfloor \frac{n}{d} \rfloor}{k} \rfloor)\times \lfloor \frac{\lfloor \frac{n}{d} \rfloor}{k} \rfloor \times k}{2}\times\frac{(1+\lfloor \frac{\lfloor \frac{m}{d} \rfloor}{k} \rfloor)\times \lfloor \frac{\lfloor \frac{m}{d} \rfloor}{k} \rfloor \times k}{2}\]

化简一下这个难看的柿子:

\[=\frac{1}{4}\sum_{d=1}^n d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor}\mu(k)\times k^2\times(1+ \lfloor \frac{n}{dk} \rfloor)\times \lfloor \frac{n}{dk} \rfloor \times(1+ \lfloor \frac{m}{dk} \rfloor)\times \lfloor \frac{m}{dk} \rfloor\]

然后令\(t=dk\),我们枚举\(t\),并提到前面来。

\[\begin{aligned} & =\frac{1}{4}\sum_{t=1}^{n}(1+ \lfloor \frac{n}{t} \rfloor)\times \lfloor \frac{n}{t} \rfloor \times(1+ \lfloor \frac{m}{t} \rfloor)\times \lfloor \frac{m}{t} \rfloor\sum_{d|t}d\times\mu(\frac{t}{d})\times\frac{t^2}{d^2}\\ & =\frac{1}{4}\sum_{t=1}^{n}(1+ \lfloor \frac{n}{t} \rfloor)\times \lfloor \frac{n}{t} \rfloor \times(1+ \lfloor \frac{m}{t} \rfloor)\times \lfloor \frac{m}{t} \rfloor\sum_{d|t}\mu(\frac{t}{d})\times\frac{t^2}{d}\end{aligned}\]

\[f(t)=\sum_{t=1}^{n}(1+ \lfloor \frac{n}{t} \rfloor)\times \lfloor \frac{n}{t} \rfloor \times(1+ \lfloor \frac{m}{t} \rfloor)\times \lfloor \frac{m}{t} \rfloor\]

\[g(t)=\sum_{d|t}\mu(\frac{t}{d})\times\frac{t^2}{d}\]

那么显然,对于\(f(t)\),我们可以用数论分块做出来。

而对于\(g(t)\),由于\(\mu(\frac{t}{d})\)是积性函数,\(\frac{t^2}{d}\)是完全积性函数,所以\(g(t)\)也是积性函数。

那么对于\(g(t)\),我们在线性筛时分三种情况讨论:

  1. \(t=p\),其中\(p\)为质数,那么我们再看回这个柿子:

    \[g(t)=\sum_{d|t}\mu(\frac{t}{d})\times\frac{t^2}{d}\]

    明显,由于\(\mu\)的定义,所以当且仅当\(\frac{t}{d}=1\)\(\frac{t}{d}=p\)时才能产生贡献,使\(\mu(\frac{t}{d})\ne0\)

    \(\frac{t}{d}=1\),则\(t=d=p\)

    \[\mu(\frac{t}{d})\times\frac{t^2}{d}=\mu(1)\times\frac{p^2}{p}=p\]

    \(\frac{t}{d}=p\),又\(t=p\),则\(d=1\)

    \[\mu(\frac{t}{d})\times\frac{t^2}{d}=\mu(p)\times\frac{p^2}{1}=-p^2\]

    合并起来,即为

    \[g(t)=\sum_{d|t}\mu(\frac{t}{d})\times\frac{t^2}{d}=p-p^2\]

  2. \(t=i*p\),其中\(p\)为质数,\(i\ne1\)\(i\%p \ne 0\),即\(gcd(i,p)=1\)。那么\(g(t)=g(i)\times g(p)\)

  3. \(t=i*p\),其中\(p\)为质数,\(i\ne1\)\(i\%p = 0\),即\(gcd(i,p)=p\),不妨设\(i=t\times p^k\)

    考虑推出:

    \[g(p^k)=\sum_{d|{p^k}}\mu(\frac{p^k}{d})\times\frac{p^{2k}}{d}\]

    根据\(\mu\)的定义,当且仅当\(\frac{p^k}{d}=1\)\(\frac{p^k}{d}=p\)时才能产生贡献,使\(\mu(\frac{p^k}{d})\ne0\)

    分情况讨论解得:

    \[
    \begin{aligned}
    g(p^k) & =\sum_{d|{p^k}}\mu(\frac{p^k}{d})\times\frac{p^{2k}}{d}\\
    & =\mu(\frac{p^k}{p^k})\times \frac{p^{2k}}{p^k}+\mu(\frac{p^k}{p^{k-1}})\times\frac{p^{2k}}{p^{k-1}}\\
    & =p^k-p^{k+1}
    \end{aligned}
    \]

    同理,我们可以推得:

    \[g(p^{k+1})=p^{k+1}-p^{k+2}\]

    由上述2式可得:

    \[g(p^{k+1})=g(p^k)\times p \tag{2}\]

    \[
    \begin{aligned}
    g(t) & =g(i\times p)\\
    & =g(t\times p^k \times p)\\
    & =g(t)\times g(p^{k+1})\text{($t$、$p$互质)}\\
    & =g(t)\times g(p^k)\times p\text{(结论(2))}\\
    & =g(t\times p^k)\times p\text{($t$、$p$互质)}\\
    & =g(i)\times p
    \end{aligned}
    \]

那么我们可以分3种情况讨论,线性求出每一个\(g(t)\),再维护一下\(g(t)\)的前缀和就好了。

最后的代码如下:

#include<bits/stdc++.h>

#define n 10000010
#define ll long long
#define mod 100000009

using namespace std;

int t,n,m,cnt;
ll prime[n],g[n],sum[n];
bool notprime[n];

void work()
{
    int maxn=n-10;
    g[1]=1;//记得初始化
    for(int i=2;i<=maxn;i++)
    {
        if(!notprime[i])
        {
            prime[++cnt]=i;
            g[i]=((i-1ll*i*i)%mod+mod)%mod;//第一种情况:t=p
        }
        for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++)
        {
            notprime[i*prime[j]]=true;
            if(!(i%prime[j]))
            {
                g[i*prime[j]]=g[i]*prime[j]%mod;//第二种情况:t=i%p且i%p=0
                break;
            }
            g[i*prime[j]]=g[i]*g[prime[j]]%mod;//第三种情况:t=i%p且i%p!=0
        }
    }
    for(int i=1;i<=maxn;i++)
        sum[i]=(sum[i-1]+g[i])%mod;//维护前缀和
}

ll query(int n,int m)
{
    ll ans=0;
    for(int l=1,r=0;l<=n;l=r+1)//数论分块
    {
        r=min(n/(n/l),m/(m/l));
        ll x=n/l,y=m/l;
        ans=(ans+(((1ll+x)*x/2ll%mod)*((1ll+y)*y/2%mod)%mod)*(sum[r]-sum[l-1])%mod)%mod;
    }
    return ans;
}

int main()
{
    work();//线性筛
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        if(n>m)swap(n,m);
        printf("%lld\n",(query(n,m)%mod+mod)%mod);
    }
    return 0;
}

《【BZOJ2693】jzptab(莫比乌斯反演).doc》

下载本文的Word格式文档,以方便收藏与打印。