JUC——线程同步锁(Condition精准控制)

2023-06-15,,

  在进行锁处理的时候还有一个接口:Condition,这个接口可以由用户来自己进行锁的对象创建。

  Condition的作用是对锁进行更精确的控制。

  Conditionawait()方法相当于Objectwait()方法,Conditionsignal()方法相当于Objectnotify()方法,ConditionsignalAll()方法相当于ObjectnotifyAll()方法。

  不同的是Objectwait(), notify(), notifyAll() 方法是和“同步锁”(synchronized关键字)捆绑使用的;而Condition是需要与“互斥锁/共享锁”捆绑使用。

  Object Condition
休眠 wait() await()
唤醒单个线程 notify() signal()
唤醒多个线程 notifyAll() signalAll()

范例:观察Condition的基本使用

package so.strong.mall.concurrent;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class ConditionDemo {
private static String msg = null; //设置一个字符串
public static void main(String[] args) throws Exception{
final Lock myLock = new ReentrantLock(); //实例化Lock接口对象
final Condition condition = myLock.newCondition(); //创建一个新的Condition接口对象
myLock.lock();
//如果现在不进行锁定,那么Condition无法执行等代理处理机制,会出现IllegalMonitorStateException
try {
new Thread(new Runnable() {
@Override
public void run() {
myLock.lock();
try {
msg = "itermis.com";
condition.signal(); //唤醒等待的Condition
} finally {
myLock.unlock();
}
}
}).start();
condition.await(); //线程等待
System.out.println("*******主线程执行完毕,msg="+msg);
} finally {
myLock.unlock(); //解除阻塞状态
}
}
}
//*******主线程执行完毕,msg=itermis.com

  与之前的Object相比,唯一的区别在于:现在看不见明确的synchronized关键字,而取代synchronizedLock接口中的lock(),unlock()两个方法,而后在阻塞状态(同步状态)下可以使用Condition中的await()signal()方法进行等待与唤醒的操作处理。

范例:实现数据的缓冲控制

package so.strong.mall.concurrent;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* @author Termis
* @date 2018/5/3
*/
public class DataBufferDemo {
public static void main(String[] args) {
final DataBuffer db = new DataBuffer();
for (int i = 0; i < 3; i++) { //创建3个写线程
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 2; j++) {
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
e.printStackTrace();
}
db.put(Thread.currentThread().getName() + "写入数据,j=" + j);
}
}
}, "生产者-" + i).start();
} for (int i = 0; i < 5; i++) { //创建5个读线程
new Thread(new Runnable() {
@Override
public void run() {
while (true) {
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("[(" + Thread.currentThread().getName() + ")CONSUMER]" + db.get());
}
}
}, "消费者-" + i).start();
}
}
} class DataBuffer { //进行数据的缓冲操作控制
private static final int MAX_LENGTH = 5; // 该类之中保存的数组长度的个数为5
private Object[] data = new Object[MAX_LENGTH]; //定义一个数组进行全部数据的保存控制
private Lock myLock = new ReentrantLock(); //创建数据锁
private Condition putCondition = myLock.newCondition(); //数据保存的Condition控制
private Condition getCondition = myLock.newCondition(); //数据读取的Condition控制
private int putIndex = 0; //写入数据的索引
private int getIndex = 0; //读取数据的索引
private int count = 0; //当前保存的元素个数 public Object get() {
Object getObj = null;
this.myLock.lock();
try {
if (this.count == 0) //没有写入
this.getCondition.await(); //读取的线程要进行等待
getObj = this.data[this.getIndex++]; //读取指定索引数据
if (this.getIndex == MAX_LENGTH)
this.getIndex = 0; //重新开始读
this.count--; //因为读了一个数据之后,现在需要减少个数
this.putCondition.signal(); //告诉写线程可以写入
} catch (Exception e) {
e.printStackTrace();
} finally {
this.myLock.unlock();
}
return getObj;
} public void put(Object obj) { //进行缓冲数据的写入操作
this.myLock.lock(); //进入独占锁状态
try {
if (this.count == MAX_LENGTH) //保存的数据已经满了
this.putCondition.await(); //暂时先别进行数据保存了
this.data[this.putIndex++] = obj; //保存当前数据
if (this.putIndex == MAX_LENGTH) //现在索引已经写满
this.putIndex = 0; //重置数组操作的索引脚标
this.count++; //保存的个数需要做一个追加
this.getCondition.signal(); //唤醒消费线程
System.out.println("[(" + Thread.currentThread().getName() + ")写入缓冲-put()]" + obj);
} catch (Exception e) {
e.printStackTrace();
} finally {
this.myLock.unlock(); //不管如何最终一定要进行解锁
}
}
}
[(生产者-2)写入缓冲-put()]生产者-2写入数据,j=0
[(生产者-1)写入缓冲-put()]生产者-1写入数据,j=0
[(生产者-0)写入缓冲-put()]生产者-0写入数据,j=0
[(生产者-1)写入缓冲-put()]生产者-1写入数据,j=1
[(生产者-2)写入缓冲-put()]生产者-2写入数据,j=1
[(消费者-3)CONSUMER]生产者-2写入数据,j=0
[(消费者-4)CONSUMER]生产者-1写入数据,j=1
[(消费者-1)CONSUMER]生产者-0写入数据,j=0
[(消费者-2)CONSUMER]生产者-1写入数据,j=0
[(生产者-0)写入缓冲-put()]生产者-0写入数据,j=1
[(消费者-0)CONSUMER]生产者-2写入数据,j=1
[(消费者-3)CONSUMER]生产者-0写入数据,j=1

  对于生产者和消费者模型的实现,除了多线程基础实现之外,也可以采用以上的模式利用LockCondition进行精确控制。

JUC——线程同步锁(Condition精准控制)的相关教程结束。

《JUC——线程同步锁(Condition精准控制).doc》

下载本文的Word格式文档,以方便收藏与打印。