java中等待所有线程都执行结束(转)

2023-06-02,,

转自:http://blog.csdn.net/liweisnake/article/details/12966761

今天看到一篇文章,是关于java中如何等待所有线程执行结束,文章总结得很好,原文如下http://software.intel.com/zh-cn/blogs/2013/10/15/java-countdownlatchcyclicbarrier/?utm_campaign=CSDN&utm_source=intel.csdn.net&utm_medium=Link&utm_content=others-%20Java

看过之后在想java中有很大的灵活性,应该有更多的方式可以做这件事。

这个事情的场景是这样的:许多线程并行的计算一堆问题,然后每个计算存在一个队列,在主线程要等待所有计算结果完成后排序并展示出来。这样的问题其实很常见。

1. 使用join。这种方式其实并不是那么的优雅,将所有线程启动完之后还需要将所有线程都join,但是每次join都会阻塞,直到被join线程完成,很可能所有被阻塞线程已经完事了,主线程还在不断地join,貌似有点浪费,而且两个循环也不太好看。

     public void testThreadSync1() {  
    
         final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    try {
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    }
    });
    threads[i].start();
    }
    for (int i = 0; i < threads.length; i++) {
    threads[i].join();
    System.out.print(i + " end.\t");
    }
    } catch (InterruptedException ie) {
    ie.printStackTrace();
    }
    printSortedResult(list);
    }
     9 add.  7 add.  3 add.  5 add.  4 add.  1 add.  0 add.  0 end.  1 end.  8 add.  2 add.  2 end.  3 end.  4 end.  5 end.  6 add.  6 end.  7 end.  8 end.  9 end.
    before sort
    9 7 3 5 4 1 0 8 2 6
    after sort
    0 1 2 3 4 5 6 7 8 9

2. 使用wait/notifyAll,这个方式其实跟上面是类似的,只是比较底层些吧(join实际上也是wait)。

     @Test
    public void testThreadSync2() throws IOException, InterruptedException {
    final Object waitObject = new Object();
    final AtomicInteger count = new AtomicInteger(TEST_THREAD_COUNT);
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    synchronized (waitObject) {
    int cnt = count.decrementAndGet();
    if (cnt == 0) {
    waitObject.notifyAll();
    }
    }
    }
    });
    threads[i].start();
    }
    synchronized (waitObject) {
    while (count.get() != 0) {
    waitObject.wait();
    }
    }
    printSortedResult(list);
    }

3. 使用CountDownLatch,这其实是最优雅的写法了,每个线程完成后都去将计数器减一,最后完成时再来唤醒。

例1

     @Test
    public void testThreadSync3() {
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    final CountDownLatch latch = new CountDownLatch(TEST_THREAD_COUNT);
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    latch.countDown();
    }
    });
    threads[i].start();
    }
    try {
    latch.await();
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    printSortedResult(list);
    }

例2

CountDownLatch 初始化设置count,即等待(await)count个线程或一个线程count次计数,通过工作线程来countDown计数减一,直到计数为0,await阻塞结束。

设置的count不可更改,如需要动态设置计数的线程数,可以使用CyclicBarrier.

下面的例子,所有的工作线程中准备就绪以后,并不是直接运行,而是等待主线程的信号后再执行具体的操作。

     package com.example.multithread;  
    
     import java.util.concurrent.CountDownLatch;  
    
     class Driver
    {
    private static final int TOTAL_THREADS = 10;
    private final CountDownLatch mStartSignal = new CountDownLatch(1);
    private final CountDownLatch mDoneSignal = new CountDownLatch(TOTAL_THREADS); void main()
    {
    for (int i = 0; i < TOTAL_THREADS; i++)
    {
    new Thread(new Worker(mStartSignal, mDoneSignal, i)).start();
    }
    System.out.println("Main Thread Now:" + System.currentTimeMillis());
    doPrepareWork();// 准备工作
    mStartSignal.countDown();// 计数减一为0,工作线程真正启动具体操作
    doSomethingElse();//做点自己的事情
    try
    {
    mDoneSignal.await();// 等待所有工作线程结束
    }
    catch (InterruptedException e)
    {
    // TODO Auto-generated catch block
    e.printStackTrace();
    }
    System.out.println("All workers have finished now.");
    System.out.println("Main Thread Now:" + System.currentTimeMillis());
    } void doPrepareWork()
    {
    System.out.println("Ready,GO!");
    } void doSomethingElse()
    {
    for (int i = 0; i < 100000; i++)
    {
    ;// delay
    }
    System.out.println("Main Thread Do something else.");
    }
    } class Worker implements Runnable
    {
    private final CountDownLatch mStartSignal;
    private final CountDownLatch mDoneSignal;
    private final int mThreadIndex; Worker(final CountDownLatch startSignal, final CountDownLatch doneSignal,
    final int threadIndex)
    {
    this.mDoneSignal = doneSignal;
    this.mStartSignal = startSignal;
    this.mThreadIndex = threadIndex;
    } @Override
    public void run()
    {
    // TODO Auto-generated method stub
    try
    {
    mStartSignal.await();// 阻塞,等待mStartSignal计数为0运行后面的代码
    // 所有的工作线程都在等待同一个启动的命令
    doWork();// 具体操作
    System.out.println("Thread " + mThreadIndex + " Done Now:"
    + System.currentTimeMillis());
    mDoneSignal.countDown();// 完成以后计数减一
    }
    catch (InterruptedException e)
    {
    // TODO Auto-generated catch block
    e.printStackTrace();
    }
    } public void doWork()
    {
    for (int i = 0; i < 1000000; i++)
    {
    ;// 耗时操作
    }
    System.out.println("Thread " + mThreadIndex + ":do work");
    }
    } public class CountDownLatchTest
    {
    public static void main(String[] args)
    {
    // TODO Auto-generated method stub
    new Driver().main();
    } }

    通过Executor启动线程:

       class CountDownLatchDriver2
      {
      private static final int TOTAL_THREADS = 10;
      private final CountDownLatch mDoneSignal = new CountDownLatch(TOTAL_THREADS); void main()
      {
      System.out.println("Main Thread Now:" + System.currentTimeMillis());
      doPrepareWork();// 准备工作 Executor executor = Executors.newFixedThreadPool(TOTAL_THREADS);
      for (int i = 0; i < TOTAL_THREADS; i++)
      {
      // 通过内建的线程池维护创建的线程
      executor.execute(new RunnableWorker(mDoneSignal, i));
      }
      doSomethingElse();// 做点自己的事情
      try
      {
      mDoneSignal.await();// 等待所有工作线程结束
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      System.out.println("All workers have finished now.");
      System.out.println("Main Thread Now:" + System.currentTimeMillis());
      } void doPrepareWork()
      {
      System.out.println("Ready,GO!");
      } void doSomethingElse()
      {
      for (int i = 0; i < 100000; i++)
      {
      ;// delay
      }
      System.out.println("Main Thread Do something else.");
      }
      } class RunnableWorker implements Runnable
      { private final CountDownLatch mDoneSignal;
      private final int mThreadIndex; RunnableWorker(final CountDownLatch doneSignal, final int threadIndex)
      {
      this.mDoneSignal = doneSignal;
      this.mThreadIndex = threadIndex;
      } @Override
      public void run()
      {
      // TODO Auto-generated method stub doWork();// 具体操作
      System.out.println("Thread " + mThreadIndex + " Done Now:"
      + System.currentTimeMillis());
      mDoneSignal.countDown();// 完成以后计数减一
      // 计数为0时,主线程接触阻塞,继续执行其他任务
      try
      {
      // 可以继续做点其他的事情,与主线程无关了
      Thread.sleep(5000);
      System.out.println("Thread " + mThreadIndex
      + " Do something else after notifing main thread"); }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      } } public void doWork()
      {
      for (int i = 0; i < 1000000; i++)
      {
      ;// 耗时操作
      }
      System.out.println("Thread " + mThreadIndex + ":do work");
      }
      }

      输出:

       Main Thread Now:1359959480786
      Ready,GO!
      Thread 0:do work
      Thread 0 Done Now:1359959480808
      Thread 1:do work
      Thread 1 Done Now:1359959480811
      Thread 2:do work
      Thread 2 Done Now:1359959480813
      Main Thread Do something else.
      Thread 3:do work
      Thread 3 Done Now:1359959480825
      Thread 5:do work
      Thread 5 Done Now:1359959480827
      Thread 7:do work
      Thread 7 Done Now:1359959480829
      Thread 9:do work
      Thread 9 Done Now:1359959480831
      Thread 4:do work
      Thread 4 Done Now:1359959480833
      Thread 6:do work
      Thread 6 Done Now:1359959480835
      Thread 8:do work
      Thread 8 Done Now:1359959480837
      All workers have finished now.
      Main Thread Now:1359959480838
      Thread 0 Do something else after notifing main thread
      Thread 1 Do something else after notifing main thread
      Thread 2 Do something else after notifing main thread
      Thread 3 Do something else after notifing main thread
      Thread 9 Do something else after notifing main thread
      Thread 7 Do something else after notifing main thread
      Thread 5 Do something else after notifing main thread
      Thread 4 Do something else after notifing main thread
      Thread 6 Do something else after notifing main thread
      Thread 8 Do something else after notifing main thread

4. 使用CyclicBarrier。这里其实类似上面,这个berrier只是在等待完成后自动调用传入CyclicBarrier的Runnable。

例1

     @Test
    public void testThreadSync4() throws IOException {
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    final CyclicBarrier barrier = new CyclicBarrier(TEST_THREAD_COUNT,
    new Runnable() {
    public void run() {
    printSortedResult(list);
    }
    });
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    try {
    barrier.await();
    } catch (InterruptedException e) {
    e.printStackTrace();
    } catch (BrokenBarrierException e) {
    e.printStackTrace();
    }
    }
    });
    threads[i].start();
    }
    System.in.read();
    }

    例2

       class WalkTarget
      {
      private final int mCount = 5;
      private final CyclicBarrier mBarrier;
      ExecutorService mExecutor; class BarrierAction implements Runnable
      {
      @Override
      public void run()
      {
      // TODO Auto-generated method stub
      System.out.println("所有线程都已经完成任务,计数达到预设值");
      //mBarrier.reset();//恢复到初始化状态 }
      } WalkTarget()
      {
      //初始化CyclicBarrier
      mBarrier = new CyclicBarrier(mCount, new BarrierAction());
      mExecutor = Executors.newFixedThreadPool(mCount); for (int i = 0; i < mCount; i++)
      {
      //启动工作线程
      mExecutor.execute(new Walker(mBarrier, i));
      }
      }
      } //工作线程
      class Walker implements Runnable
      {
      private final CyclicBarrier mBarrier;
      private final int mThreadIndex; Walker(final CyclicBarrier barrier, final int threadIndex) {
      mBarrier = barrier;
      mThreadIndex = threadIndex;
      } @Override
      public void run()
      {
      // TODO Auto-generated method stub
      System.out.println("Thread " + mThreadIndex + " is running...");
      // 执行任务
      try
      {
      TimeUnit.MILLISECONDS.sleep(5000);
      // do task
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      } // 完成任务以后,等待其他线程完成任务
      try
      {
      mBarrier.await();
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      catch (BrokenBarrierException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      // 其他线程任务都完成以后,阻塞解除,可以继续接下来的任务
      System.out.println("Thread " + mThreadIndex + " do something else");
      } } public class CountDownLatchTest
      {
      public static void main(String[] args)
      {
      // TODO Auto-generated method stub
      //new CountDownLatchDriver2().main();
      new WalkTarget();
      } }

      输出(注意,只有所有的线程barrier.await之后才能继续执行其他的操作):

      Thread 0 is running... Thread 2 is running... Thread 3 is running... Thread 1 is running... Thread 4 is running... 所有线程都已经完成任务,计数达到预设值 Thread 4 do something else Thread 0 do something else Thread 2 do something else Thread 3 do something else Thread 1 do something else

5、

CountDownLatch和CyclicBarrier简单比较:

CountDownLatch

CyclicBarrier

软件包

java.util.concurrent

java.util.concurrent

适用情景

主线程等待多个工作线程结束

多个线程之间互相等待,直到所有线程达到一个障碍点(Barrier point)

主要方法

CountDownLatch(int count) (主线程调用)

初始化计数

CountDownLatch.await (主线程调用)

阻塞,直到等待计数为0解除阻塞

CountDownLatch.countDown

计数减一(工作线程调用)

CyclicBarrier(int parties, Runnable barrierAction) //初始化参与者数量和障碍点执行Action,Action可选。由主线程初始化

CyclicBarrier.await() //由参与者调用

阻塞,直到所有线程达到屏障点

等待结束

各线程之间不再互相影响,可以继续做自己的事情。不再执行下一个目标工作。

在屏障点达到后,允许所有线程继续执行,达到下一个目标。可以重复使用CyclicBarrier

异常

如果其中一个线程由于中断,错误,或超时导致永久离开屏障点,其他线程也将抛出异常。

其他

如果BarrierAction不依赖于任何Party中的所有线程,那么在任何party中的一个线程被释放的时候,可以直接运行这个Action。

If(barrier.await()==2)

{

//do action

}

java中等待所有线程都执行结束(转)的相关教程结束。

《java中等待所有线程都执行结束(转).doc》

下载本文的Word格式文档,以方便收藏与打印。