bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

2022-11-24,,,,

noi2011 兔兔与蛋蛋

题目大意

直接看原题吧

就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格

兔兔先手,蛋蛋后手

兔兔要把与空格相邻的其中一个白棋移到空格里

蛋蛋要把与空格相邻的其中一个黑棋移到空格里

谁不能移动谁输

分析

这篇博客挺好的

我们可以将题意转化成兔兔将空格移到白棋那里

蛋蛋将空格移动到黑棋那里

转化成图黑白染色,变成二分图

我们设空格染成黑色

那空格移动的轨迹一定是:

黑\(~\)-白-黑-白-黑

对应的是:

空格-白棋-黑棋-白棋-黑棋

所以染成白色且为白棋\(~\)或\(~\)染成黑色且为黑棋

的才是合法点(其他点不可能移动的)

将相邻合法点连边

同时把空格当成黑棋看

又根据奇偶性,从空格从一个点出发不可能绕回那个点

博弈

假如我们现在求出了一个最大匹配

那么如果一个点一定在最大匹配中,那么他有必胜策略

否则没有

证明:

已匹配的边记为\(A\)

未匹配的边记为\(B\)

那么从一个点出发走到无路可走\(~~\)且\(~~\)有A尽量走A有以下几种情况:(图自行脑补)

根据匹配,不可能出现\(AA\)

思考一下,不可能出现\(BB\)(因为前一个\(B\)没有匹配边\(A\)了,后一个\(B\)无路可走了)

还有就是从一个点出发有\(B\)则那个点出发还一定有个\(A\)

1.\(ABAB\)

这种情况\(AB\)可以互换,最大匹配不变

出发点不一定在最大匹配中,先手走\(A\)会让对方有必胜策略

2.\(BABA\)

同上

出发点不一定在最大匹配中,先手走\(B\)会让对方有必胜策略

3.\(BABAB\)

因为从一个点出发有\(B\)则那个点出发还一定有个\(A\)

交换\(AB\)最大匹配不变,且出发点依然在最大匹配中

出发点一定在最大匹配中,先手走\(B\)或\(A\)都能赢

4.\(ABABA\)

这种情况出发点一定在最大匹配中,先手走\(A\)就赢了

做法

证明完了

现在如何判断一个点是否一定在最大匹配中呢?

首先如果本来就不在最大匹配直接就不行了

否则删掉这个点,并断掉这个点的匹配边,从它匹配点增广

匹配点能增广它就不一定在最大匹配了

做法

于是我们动态ban点

每读入一个操作就ban掉一个点就好了

姿势

匈牙利vis数组可以用时间戳

标号都不一样的话可以两边一起匹配

bool xyl(int x){
int p,y;
for(p=g[x];p;p=e[p].nxt)
if(vis[y=e[p].y]!=T&&!del[y]){
vis[y]=T;
if(lnk[y]==-1||xyl(lnk[y])){
lnk[y]=x;//
lnk[x]=y;//
return 1;
}
}
return 0;
}
int main(){
for(i=1;i<=cnt;i++)
if(lnk[i]==-1){
T++;
xyl(i);
}
}

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int M=1603;
const int N=43; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m,nm,K,T;
int g[M],te;
struct edge{int y,nxt;}e[M<<3];
char s[N][N];
int num[N][N],cnt,ck;
bool win[2007];
int del[M];
int lnk[M];
int vis[M]; void addedge(int x,int y){
e[++te].y=y;e[te].nxt=g[x];g[x]=te;
} bool xyl(int x){
int p,y;
for(p=g[x];p;p=e[p].nxt)
if(vis[y=e[p].y]!=T&&!del[y]){
vis[y]=T;
if(lnk[y]==-1||xyl(lnk[y])){
lnk[y]=x;
lnk[x]=y;
return 1;
}
}
return 0;
} int main(){
int i,j,x,y,nw;
n=rd(),m=rd();
for(i=1;i<=n;i++) scanf("%s",s[i]+1);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
if(s[i][j]=='.'){
s[i][j]='X';//要使它有连边
x=i; y=j;//x,y存的是空格位置
ck=(i+j)%2;
break;
}
for(i=1;i<=n;i++)
for(j=1;j<=m;j++){
if(s[i][j]=='X'&&(i+j)%2==ck) num[i][j]=++cnt;
if(s[i][j]=='O'&&(i+j)%2!=ck) num[i][j]=++cnt;
}
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
if(num[i][j]){
if(i>1&&num[i-1][j]) addedge(num[i][j],num[i-1][j]);
if(i<n&&num[i+1][j]) addedge(num[i][j],num[i+1][j]);
if(j>1&&num[i][j-1]) addedge(num[i][j],num[i][j-1]);
if(j<m&&num[i][j+1]) addedge(num[i][j],num[i][j+1]);
} memset(lnk,-1,sizeof(lnk)); for(i=1;i<=cnt;i++)
if(lnk[i]==-1){
T++;
xyl(i);
} K=rd();
for(i=1;i<=K*2;i++){
nw=num[x][y];
del[nw]=1;
if(lnk[nw]==-1) win[i]=0;
else{
int tp=lnk[nw];
lnk[nw]=lnk[tp]=-1;
T++;
win[i]= !xyl(tp);
}
x=rd(),y=rd();
} int ans=0;
for(i=1;i<=K;i++)
if(win[i*2]&&win[i*2-1]) ans++;
printf("%d\n",ans); for(i=1;i<=K;i++)
if(win[i*2]&&win[i*2-1]) printf("%d\n",i); return 0;
}

bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势的相关教程结束。

《bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势.doc》

下载本文的Word格式文档,以方便收藏与打印。