自然语言处理系列(三)——LSTM

2022-10-22,,

目录

  • 一、结构比较
  • 二、LSTM基础
  • 三、从零开始搭建LSTM
  • 四、测试我们的LSTM
    • 4.1 字符预测任务
    • 4.2 数据预处理
    • 4.3 训练与测试

一、结构比较

只考虑单隐层单向的RNN,忽略输出层,首先看Vanilla RNN中一个cell的结构:

其计算过程为(设批量大小为

N

N

N,隐层结点个数为

h

h

h,输入特征数为

d

d

d):

H

t

=

tanh

(

X

t

W

x

h

+

H

t

1

W

h

h

+

b

h

)

{\bf H}_t=\tanh({\bf X}_t{\bf W}_{xh}+{\bf H}_{t-1}{\bf W}_{hh}+{\boldsymbol b}_h)

Ht=tanh(XtWxh+Ht1Whh+bh)

其中各参数的形状为:

  • H

    t

    ,

    H

    t

    1

    {\bf H}_t,{\bf H}_{t-1}

    Ht,Ht1

    N

    ×

    h

    N\times h

    N×h

  • X

    t

    {\bf X}_t

    Xt

    N

    ×

    d

    N\times d

    N×d

  • W

    x

    h

    {\bf W}_{xh}

    Wxh

    d

    ×

    h

    d\times h

    d×h

  • W

    h

    h

    {\bf W}_{hh}

    Whh

    h

    ×

    h

    h\times h

    h×h

  • b

    h

    {\boldsymbol b}_{h}

    bh

    1

    ×

    h

    1\times h

    1×h

在计算时,

b

h

{\boldsymbol b}_{h}

bh 将利用广播机制从上往下复制成

N

×

h

N\times h

N×h 的形状。


LSTM中一个cell的结构:

其计算过程为(设

σ

(

)

\sigma(\cdot)

σ() 代表

Sigmoid

(

)

\text{Sigmoid}(\cdot)

Sigmoid()):

I

t

=

σ

(

X

t

W

x

i

+

H

t

1

W

h

i

+

b

i

)

F

t

=

σ

(

X

t

W

x

f

+

H

t

1

W

h

f

+

b

f

)

O

t

=

σ

(

X

t

W

x

o

+

H

t

1

W

h

o

+

b

o

)

C

~

t

=

tanh

(

X

t

W

x

c

+

H

t

1

W

h

c

+

b

c

)

C

t

=

F

t

C

t

1

+

I

t

C

~

t

H

t

=

O

t

tanh

(

C

t

)

\begin{aligned} {\bf I}_t&=\sigma({\bf X}_t{\bf W}_{xi}+{\bf H}_{t-1}{\bf W}_{hi}+{\boldsymbol b}_i) \\ {\bf F}_t&=\sigma({\bf X}_t{\bf W}_{xf}+{\bf H}_{t-1}{\bf W}_{hf}+{\boldsymbol b}_f) \\ {\bf O}_t&=\sigma({\bf X}_t{\bf W}_{xo}+{\bf H}_{t-1}{\bf W}_{ho}+{\boldsymbol b}_o) \\ \tilde{{\bf C}}_t&=\tanh({\bf X}_t{\bf W}_{xc}+{\bf H}_{t-1}{\bf W}_{hc}+{\boldsymbol b}_c) \\ {\bf C}_t&={\bf F}_t \odot{\bf C}_{t-1}+{\bf I}_t\odot \tilde{{\bf C}}_t \\ {\bf H}_t&={\bf O}_t\odot \tanh({\bf C}_t) \\ \end{aligned}

ItFtOtC~tCtHt=σ(XtWxi+Ht1Whi+bi)=σ(XtWxf+Ht1Whf+bf)=σ(XtWxo+Ht1Who+bo)=tanh(XtWxc+Ht1Whc+bc)=FtCt1+ItC~t=Ottanh(Ct)

其中

\odot

是矩阵的 Hadamard 积,各参数的形状如下:

  • H

    t

    ,

    H

    t

    1

    {\bf H}_t,{\bf H}_{t-1}

    Ht,Ht1

    I

    t

    ,

    F

    t

    ,

    O

    t

    {\bf I}_t,{\bf F}_t,{\bf O}_t

    It,Ft,Ot

    C

    ~

    t

    ,

    C

    t

    ,

    C

    t

    1

    \tilde{{\bf C}}_t,{\bf C}_t,{\bf C}_{t-1}

    C~t,Ct,Ct1

    N

    ×

    h

    N\times h

    N×h

  • X

    t

    {\bf X}_t

    Xt

    N

    ×

    d

    N\times d

    N×d

  • W

    x

    i

    ,

    W

    x

    f

    ,

    W

    x

    o

    ,

    W

    x

    c

    {\bf W}_{xi},{\bf W}_{xf},{\bf W}_{xo},{\bf W}_{xc}

    Wxi,Wxf,Wxo,Wxc

    d

    ×

    h

    d\times h

    d×h

  • W

    h

    i

    ,

    W

    h

    f

    ,

    W

    h

    o

    ,

    W

    h

    c

    {\bf W}_{hi},{\bf W}_{hf},{\bf W}_{ho},{\bf W}_{hc}

    Whi,Whf,Who,Whc

    h

    ×

    h

    h\times h

    h×h

  • b

    i

    ,

    b

    f

    ,

    b

    o

    ,

    b

    c

    {\boldsymbol b}_{i},{\boldsymbol b}_{f},{\boldsymbol b}_{o},{\boldsymbol b}_{c}

    bi,bf,bo,bc

    1

    ×

    h

    1\times h

    1×h

二、LSTM基础

LSTM一共有三个门:

I

t

,

F

t

,

O

t

{\bf I}_t,{\bf F}_t,{\bf O}_t

It,Ft,Ot 分别代表输入门、遗忘门和输出门。输入门用来控制采用多少来自

C

~

t

\tilde{{\bf C}}_t

C~t 的新数据,遗忘门用来控制保留多少

C

t

1

{\bf C}_{t-1}

Ct1 的内容,输出门用来控制向下一个时间步传递多少记忆信息。

对于LSTM,只考虑 batch_first=True 的情形,输入数据的形状为

L

×

N

×

d

L\times N\times d

L×N×d。此外还需输入

H

0

{\bf H}_0

H0

C

0

{\bf C}_0

C0,其形状均为

1

×

N

×

h

1\times N\times h

1×N×h

LSTM 在所有时间步上的输出为

[

H

1

,

H

2

,


,

H

L

]

L

×

N

×

h

[{\bf H}_1,{\bf H}_2,\cdots,{\bf H}_L]_{L\times N\times h}

[H1,H2,,HL]L×N×h

[

C

1

,

C

2

,


,

C

L

]

L

×

N

×

h

[{\bf C}_1,{\bf C}_2,\cdots,{\bf C}_L]_{L\times N\times h}

[C1,C2,,CL]L×N×h。其中

H

t

{\bf H}_t

Ht 代表

t

t

t 时刻的隐状态,

C

t

{\bf C}_t

Ct 代表

t

t

t 时刻的记忆。

三、从零开始搭建LSTM

不考虑隐层和输出层之间的参数,可以看出LSTM需要学习的参数一共有

4

4

4 组,即:

(

W

x

,

W

h

,

b

)

,
  

where
  

=

i

,

f

,

o

,

c

({\bf W}_{x*},{\bf W}_{h*},{\boldsymbol b}_{*}),\; \text{where}\;*=i,f,o,c

(Wx,Wh,b),where=i,f,o,c。因此我们可以按组去初始化相应的参数。

LSTM需要学习的参数一共有

3

×

4

=

12

3\times4=12

3×4=12 个,相比Vanilla RNN的

3

3

3 个参数多了很多。

首先导入本文代码涉及到的所有包:

import math
import string
import numpy as np
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
import torch.nn.functional as F

我们定义一个函数来初始化一组的参数。注意到每一组参数的形状为

(

d

×

h

,

h

×

h

,

1

×

h

)

(d\times h,h\times h,1\times h)

(d×h,h×h,1×h)

def init_group_params(input_size, hidden_size):
    std = math.sqrt(2 / (input_size + hidden_size))
    return nn.Parameter(torch.randn(input_size, hidden_size) * std), \
           nn.Parameter(torch.randn(hidden_size, hidden_size) * std), \
           nn.Parameter(torch.randn(1, hidden_size) * std)

接下来搭建LSTM(模仿 nn.LSTM,即不包含隐层和输出层之间的参数):

class LSTM(nn.Module):

    def __init__(self, input_size, hidden_size):
        super().__init__()
        self.W_xi, self.W_hi, self.b_i = init_group_params(input_size, hidden_size)
        self.W_xf, self.W_hf, self.b_o = init_group_params(input_size, hidden_size)
        self.W_xo, self.W_ho, self.b_f = init_group_params(input_size, hidden_size)
        self.W_xc, self.W_hc, self.b_c = init_group_params(input_size, hidden_size)

    def forward(self, inputs, h_0, c_0):
        L, N, d = inputs.shape
        H, C = h_0[0], c_0[0]
        outputs = torch.zeros(L, N, H.shape[1])
        for t in range(L):
            X = inputs[t]
            I = torch.sigmoid(X @ self.W_xi + H @ self.W_hi + self.b_i)
            F = torch.sigmoid(X @ self.W_xf + H @ self.W_hf + self.b_f)
            O = torch.sigmoid(X @ self.W_xo + H @ self.W_ho + self.b_o)
            C_temp = torch.tanh(X @ self.W_xc + H @ self.W_hc + self.b_c)
            C = F * C + I * C_temp
            H = O * torch.tanh(C)
            outputs[t] = H
        h_n, c_n = H.unsqueeze(0), C.unsqueeze(0)
        return outputs, h_n, c_n

最后搭建模型,此时需要加上线性层(输出层):

class Model(nn.Module):

    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.lstm = LSTM(input_size, hidden_size)
        self.linear = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        # 全零初始化h_0和c_0
        _, h_n, _ = self.lstm(x, torch.zeros(1, x.shape[1], self.linear.in_features).to(device),
                              torch.zeros(1, x.shape[1], self.linear.in_features).to(device))
        return self.linear(h_n[0])

四、测试我们的LSTM

为了验证搭建好的LSTM是正确的模型,我们需要用它来完成一个任务。

4.1 字符预测任务

通俗点来讲,即给定一个单词(长度为

n

n

n),当模型读取了前

n

1

n-1

n1 个字母后,它能够准确地预测出最后一个字母。例如,对于单词 machine,当模型读取完 machin 后,它应当给出预测结果:e

我们使用单词数据集(下载地址),其中训练集包含了 8000 个单词,测试集包含了 2000 个单词,且训练集和测试集没有重合。

4.2 数据预处理

LSTM无法直接识别字母,因此需要先将单个字母转化成张量(one-hot编码):

def letter2tensor(letter):
    letter_idx = torch.tensor(string.ascii_lowercase.index(letter))
    return F.one_hot(letter_idx, num_classes=len(string.ascii_lowercase))

然后再创建一个函数用于将整个单词转化成对应的张量(这里我们将一个单词视为一个 batch,因此形状为

L

×

1

×

d

L\times1\times d

L×1×d,其中

d

=

26

d=26

d=26

L

L

L 是单词的长度):

def word2tensor(word):
    result = torch.zeros(len(word), len(string.ascii_lowercase))
    for i in range(len(word)):
        result[i] = letter2tensor(word[i])
    return result.unsqueeze(1)

例如:

print(word2tensor('cat'))
# tensor([[[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
#           0., 0., 0., 0., 0., 0., 0., 0., 0.]],

#         [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
#           0., 0., 0., 0., 0., 0., 0., 0., 0.]],

#         [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
#           0., 0., 1., 0., 0., 0., 0., 0., 0.]]])

读取训练集和测试集:

with open('words/train.txt') as f:
    train_data = f.read().strip().split('\n')
    
with open('words/test.txt') as f:
    test_data = f.read().strip().split('\n')
    
print(train_data[0], test_data[1])
# clothe trend

此外,为了保证结果的可复现性,我们还需设置种子:

def setup_seed(seed):
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

4.3 训练与测试

我们将在训练集上训练 5 个epoch,因为 batch_size=1,所以每隔 800 个 Iteration 输出一次损失并计算此时模型在测试集上的准确率,最后绘制相应的曲线。

setup_seed(42)

device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 实际上相当于26分类任务,所以输出层神经元个数是26
model = Model(26, 64, 26)
model.to(device)

LR = 7e-3  # 学习率
EPOCHS = 5  # 多少个epoch
INTERVAL = 800  # 多少个iteration输出一次

critertion = nn.CrossEntropyLoss()
# 采用SGD优化器会出现测试集精度不变的情况
optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=3e-4)

train_loss = []
test_acc = []
avg_train_loss = 0  # 训练集平均损失
correct = 0  # 模型在测试集上预测正确的个数

for epoch in range(EPOCHS):
    print(f'Epoch {epoch+1}')
    print('-' * 62)
    for iteration in range(len(train_data)):
        full_word = train_data[iteration]
        # 读取的是前n-1个字母,最后一个字母用作target
        X = word2tensor(full_word[:-1]).to(device)
        target = torch.tensor([string.ascii_lowercase.index(full_word[-1])]).to(device)

        # 正向传播
        output = model(X)
        loss = critertion(output, target)
        avg_train_loss += loss

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 每隔800个iteration输出一次损失并计算模型在测试集上的准确率
        if (iteration + 1) % INTERVAL == 0:
            avg_train_loss /= INTERVAL
            train_loss.append(avg_train_loss.item())

            # 计算模型在测试集上的预测准确率
            with torch.no_grad():
                for test_word in test_data:
                    X = word2tensor(test_word[:-1]).to(device)
                    target = torch.tensor(string.ascii_lowercase.index(test_word[-1])).to(device)
                    pred = model(X)
                    correct += (pred.argmax() == target).sum().item()
                acc = correct / len(test_data)
                test_acc.append(acc)

            print(
                f'Iteration: [{iteration + 1:04}/{len(train_data)}] | Train Loss: {avg_train_loss:.4f} | Test Acc: {acc:.4f}'
            )
            avg_train_loss, correct = 0, 0
    print()

这里仅展示最后一个 epoch 的输出:

Epoch 5
--------------------------------------------------------------
Iteration: [0800/8000] | Train Loss: 1.2918 | Test Acc: 0.6000
Iteration: [1600/8000] | Train Loss: 1.1903 | Test Acc: 0.5910
Iteration: [2400/8000] | Train Loss: 1.2615 | Test Acc: 0.6075
Iteration: [3200/8000] | Train Loss: 1.2236 | Test Acc: 0.6015
Iteration: [4000/8000] | Train Loss: 1.2355 | Test Acc: 0.5925
Iteration: [4800/8000] | Train Loss: 1.1314 | Test Acc: 0.6050
Iteration: [5600/8000] | Train Loss: 1.2172 | Test Acc: 0.6045
Iteration: [6400/8000] | Train Loss: 1.1808 | Test Acc: 0.6140
Iteration: [7200/8000] | Train Loss: 1.2092 | Test Acc: 0.6185
Iteration: [8000/8000] | Train Loss: 1.1845 | Test Acc: 0.6040

绘制曲线:

step = INTERVAL / len(train_data)
plt.plot(np.arange(step, EPOCHS + step, step), train_loss, label="train loss")
plt.plot(np.arange(step, EPOCHS + step, step), test_acc, label="test acc")
plt.legend(loc="best", fontsize=12)
plt.xlabel('epoch')
plt.show()

从上图可以看出,模型在测试集上的预测准确率趋于

0.6

0.6

0.6,原因可能有如下几点:

  • 数据集的质量不佳;
  • 数据集过于简单,LSTM出现了过拟合;
  • 我们的任务不够 “自洽”。

《自然语言处理系列(三)——LSTM.doc》

下载本文的Word格式文档,以方便收藏与打印。