Java 线程池(ThreadPoolExecutor)原理解析

2022-11-19,,,,

在我们的开发中“池”的概念并不罕见,有数据库连接池、线程池、对象池、常量池等等。下面我们主要针对线程池来一步一步揭开线程池的面纱。

有关java线程技术文章还可以推荐阅读:《关于java多线程wait 和sleep方法》、《java 核心编程——线程之线程的基本概念》、《上海尚学堂:40个Java多线程问题总结》、《java多线程的内存模型》

一、使用线程池的好处

1、降低资源消耗

可以重复利用已创建的线程降低线程创建和销毁造成的消耗。

2、提高响应速度

当任务到达时,任务可以不需要等到线程创建就能立即执行。

3、提高线程的可管理性

线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控

二、线程池的工作原理

首先我们看下当一个新的任务提交到线程池之后,线程池是如何处理的

1、线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则执行第二步。

2、线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里进行等待。如果工作队列满了,则执行第三步

3、线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务

三、线程池饱和策略

这里提到了线程池的饱和策略,那我们就简单介绍下有哪些饱和策略:

AbortPolicy

为Java线程池默认的阻塞策略,不执行此任务,而且直接抛出一个运行时异常,切记ThreadPoolExecutor.execute需要try catch,否则程序会直接退出。

DiscardPolicy

直接抛弃,任务不执行,空方法

DiscardOldestPolicy

从队列里面抛弃head的一个任务,并再次execute 此task。

CallerRunsPolicy

在调用execute的线程里面执行此command,会阻塞入口

用户自定义拒绝策略(最常用)

实现RejectedExecutionHandler,并自己定义策略模式

下我们以ThreadPoolExecutor为例展示下线程池的工作流程图

1、如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。

2、如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。

3、如果无法将任务加入BlockingQueue(队列已满),则在非corePool中创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。

4、如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法。

ThreadPoolExecutor采取上述步骤的总体设计思路,是为了在执行execute()方法时,尽可能地避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在ThreadPoolExecutor完成预热之后(当前运行的线程数大于等于corePoolSize),几乎所有的execute()方法调用都是执行步骤2,而步骤2不需要获取全局锁。

关键方法源码分析

我们看看核心方法添加到线程池方法execute的源码如下:

     //
//Executes the given task sometime in the future. The task
//may execute in a new thread or in an existing pooled thread.
//
// If the task cannot be submitted for execution, either because this
// executor has been shutdown or because its capacity has been reached,
// the task is handled by the current {@code RejectedExecutionHandler}.
//
// @param command the task to execute
// @throws RejectedExecutionException at discretion of
// {@code RejectedExecutionHandler}, if the task
// cannot be accepted for execution
// @throws NullPointerException if {@code command} is null
//
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
//
// Proceed in 3 steps:
//
// 1. If fewer than corePoolSize threads are running, try to
// start a new thread with the given command as its first
// task. The call to addWorker atomically checks runState and
// workerCount, and so prevents false alarms that would add
// threads when it shouldn't, by returning false.
// 翻译如下:
// 判断当前的线程数是否小于corePoolSize如果是,使用入参任务通过addWord方法创建一个新的线程,
// 如果能完成新线程创建exexute方法结束,成功提交任务
// 2. If a task can be successfully queued, then we still need
// to double-check whether we should have added a thread
// (because existing ones died since last checking) or that
// the pool shut down since entry into this method. So we
// recheck state and if necessary roll back the enqueuing if
// stopped, or start a new thread if there are none.
// 翻译如下:
// 在第一步没有完成任务提交;状态为运行并且能否成功加入任务到工作队列后,再进行一次check,如果状态
// 在任务加入队列后变为了非运行(有可能是在执行到这里线程池shutdown了),非运行状态下当然是需要
// reject;然后再判断当前线程数是否为0(有可能这个时候线程数变为了0),如是,新增一个线程;
// 3. If we cannot queue task, then we try to add a new
// thread. If it fails, we know we are shut down or saturated
// and so reject the task.
// 翻译如下:
// 如果不能加入任务到工作队列,将尝试使用任务新增一个线程,如果失败,则是线程池已经shutdown或者线程池
// 已经达到饱和状态,所以reject这个他任务
//
int c = ctl.get();
// 工作线程数小于核心线程数
if (workerCountOf(c) < corePoolSize) {
// 直接启动新线程,true表示会再次检查workerCount是否小于corePoolSize
if (addWorker(command, true))
return;
c = ctl.get();
}
// 如果工作线程数大于等于核心线程数
// 线程的的状态未RUNNING并且队列notfull
if (isRunning(c) && workQueue.offer(command)) {
// 再次检查线程的运行状态,如果不是RUNNING直接从队列中移除
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
// 移除成功,拒绝该非运行的任务
reject(command);
else if (workerCountOf(recheck) == 0)
// 防止了SHUTDOWN状态下没有活动线程了,但是队列里还有任务没执行这种特殊情况。
// 添加一个null任务是因为SHUTDOWN状态下,线程池不再接受新任务
addWorker(null, false);
}
// 如果队列满了或者是非运行的任务都拒绝执行
else if (!addWorker(command, false))
reject(command);
}

下面我们继续看看addWorker是如何实现的:

  private boolean addWorker(Runnable firstTask, boolean core) {
// java标签
retry:
// 死循环
for (;;) {
int c = ctl.get();
// 获取当前线程状态
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 这个逻辑判断有点绕可以改成
// rs >= shutdown && (rs != shutdown || firstTask != null || workQueue.isEmpty())
// 逻辑判断成立可以分为以下几种情况均不接受新任务
// 1、rs > shutdown:--不接受新任务
// 2、rs >= shutdown && firstTask != null:--不接受新任务
// 3、rs >= shutdown && workQueue.isEmppty:--不接受新任务
// 逻辑判断不成立
// 1、rs==shutdown&&firstTask != null:此时不接受新任务,但是仍会执行队列中的任务
// 2、rs==shotdown&&firstTask == null:会执行addWork(null,false)
// 防止了SHUTDOWN状态下没有活动线程了,但是队列里还有任务没执行这种特殊情况。
// 添加一个null任务是因为SHUTDOWN状态下,线程池不再接受新任务
if (rs >= SHUTDOWN &&! (rs == SHUTDOWN && firstTask == null &&! workQueue.isEmpty()))
return false;
// 死循环
// 如果线程池状态为RUNNING并且队列中还有需要执行的任务
for (;;) {
// 获取线程池中线程数量
int wc = workerCountOf(c);
// 如果超出容量或者最大线程池容量不在接受新任务
if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 线程安全增加工作线程数
if (compareAndIncrementWorkerCount(c))
// 跳出retry
break retry;
c = ctl.get(); // Re-read ctl
// 如果线程池状态发生变化,重新循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} // 走到这里说明工作线程数增加成功
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 加锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
// RUNNING状态 || SHUTDONW状态下清理队列中剩余的任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// 检查线程状态
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 将新启动的线程添加到线程池中
workers.add(w);
// 更新线程池线程数且不超过最大值
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 启动新添加的线程,这个线程首先执行firstTask,然后不停的从队列中取任务执行
if (workerAdded) {
//执行ThreadPoolExecutor的runWoker方法
t.start();
workerStarted = true;
}
}
} finally {
// 线程启动失败,则从wokers中移除w并递减wokerCount
if (! workerStarted)
// 递减wokerCount会触发tryTerminate方法
addWorkerFailed(w);
}
return workerStarted;
}

addWorker之后是runWorker,第一次启动会执行初始化传进来的任务firstTask;然后会从workQueue中取任务执行,如果队列为空则等待keepAliveTime这么长时间

 final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 允许中断
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 如果getTask返回null那么getTask中会将workerCount递减,如果异常了这个递减操作会在processWorkerExit中处理
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}

我们看下getTask是如何执行的

private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
// 死循环
retry: for (;;) {
// 获取线程池状态
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 1.rs > SHUTDOWN 所以rs至少等于STOP,这时不再处理队列中的任务
// 2.rs = SHUTDOWN 所以rs>=STOP肯定不成立,这时还需要处理队列中的任务除非队列为空
// 这两种情况都会返回null让runWoker退出while循环也就是当前线程结束了,所以必须要decrement
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
// 递减workerCount值
decrementWorkerCount();
return null;
}
// 标记从队列中取任务时是否设置超时时间
boolean timed; // Are workers subject to culling?
// 1.RUNING状态
// 2.SHUTDOWN状态,但队列中还有任务需要执行
for (;;) {
int wc = workerCountOf(c);
// 1.core thread允许被超时,那么超过corePoolSize的的线程必定有超时
// 2.allowCoreThreadTimeOut == false && wc >
// corePoolSize时,一般都是这种情况,core thread即使空闲也不会被回收,只要超过的线程才会
timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 从addWorker可以看到一般wc不会大于maximumPoolSize,所以更关心后面半句的情形:
// 1. timedOut == false 第一次执行循环, 从队列中取出任务不为null方法返回 或者
// poll出异常了重试
// 2.timeOut == true && timed ==
// false:看后面的代码workerQueue.poll超时时timeOut才为true,
// 并且timed要为false,这两个条件相悖不可能同时成立(既然有超时那么timed肯定为true)
// 所以超时不会继续执行而是return null结束线程。
if (wc <= maximumPoolSize && !(timedOut && timed))
break;
// workerCount递减,结束当前thread
if (compareAndDecrementWorkerCount(c))
return null;
c = ctl.get(); // Re-read ctl
// 需要重新检查线程池状态,因为上述操作过程中线程池可能被SHUTDOWN
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
try {
// 1.以指定的超时时间从队列中取任务
// 2.core thread没有超时
Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();
if (r != null)
return r;
timedOut = true;// 超时
} catch (InterruptedException retry) {
timedOut = false;// 线程被中断重试
}
}
}

下面我们看下processWorkerExit是如何工作的

private void processWorkerExit(Worker w, boolean completedAbruptly) {
// 正常的话再runWorker的getTask方法workerCount已经被减一了
if (completedAbruptly)
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 累加线程的completedTasks
completedTaskCount += w.completedTasks;
// 从线程池中移除超时或者出现异常的线程
workers.remove(w);
} finally {
mainLock.unlock();
}
// 尝试停止线程池
tryTerminate();
int c = ctl.get();
// runState为RUNNING或SHUTDOWN
if (runStateLessThan(c, STOP)) {
// 线程不是异常结束
if (!completedAbruptly) {
// 线程池最小空闲数,允许core thread超时就是0,否则就是corePoolSize
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
// 如果min == 0但是队列不为空要保证有1个线程来执行队列中的任务
if (min == 0 && !workQueue.isEmpty())
min = 1;
// 线程池还不为空那就不用担心了
if (workerCountOf(c) >= min)
return; // replacement not needed
}
// 1.线程异常退出
// 2.线程池为空,但是队列中还有任务没执行,看addWoker方法对这种情况的处理
addWorker(null, false);
}
}

tryTerminate

processWorkerExit方法中会尝试调用tryTerminate来终止线程池。这个方法在任何可能导致线程池终止的动作后执行:比如减少wokerCount或SHUTDOWN状态下从队列中移除任务。

final void tryTerminate() {
for (;;) {
int c = ctl.get();
// 以下状态直接返回:
// 1.线程池还处于RUNNING状态
// 2.SHUTDOWN状态但是任务队列非空
// 3.runState >= TIDYING 线程池已经停止了或在停止了
if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && !workQueue.isEmpty()))
return;
// 只能是以下情形会继续下面的逻辑:结束线程池。
// 1.SHUTDOWN状态,这时不再接受新任务而且任务队列也空了
// 2.STOP状态,当调用了shutdownNow方法
// workerCount不为0则还不能停止线程池,而且这时线程都处于空闲等待的状态
// 需要中断让线程“醒”过来,醒过来的线程才能继续处理shutdown的信号。
if (workerCountOf(c) != 0) { // Eligible to terminate
// runWoker方法中w.unlock就是为了可以被中断,getTask方法也处理了中断。
// ONLY_ONE:这里只需要中断1个线程去处理shutdown信号就可以了。
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 进入TIDYING状态
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
// 子类重载:一些资源清理工作
terminated();
} finally {
// TERMINATED状态
ctl.set(ctlOf(TERMINATED, 0));
// 继续awaitTermination
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}

shutdown这个方法会将runState置为SHUTDOWN,会终止所有空闲的线程。shutdownNow方法将runState置为STOP。和shutdown方法的区别,这个方法会终止所有的线程。主要区别在于shutdown调用的是interruptIdleWorkers这个方法,而shutdownNow实际调用的是Worker类的interruptIfStarted方法:

他们的实现如下:

public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
// 线程池状态设为SHUTDOWN,如果已经至少是这个状态那么则直接返回
advanceRunState(SHUTDOWN);
// 注意这里是中断所有空闲的线程:runWorker中等待的线程被中断 → 进入processWorkerExit →
// tryTerminate方法中会保证队列中剩余的任务得到执行。
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
// STOP状态:不再接受新任务且不再执行队列中的任务。
advanceRunState(STOP);
// 中断所有线程
interruptWorkers();
// 返回队列中还没有被执行的任务。
tasks = drainQueue();
}
finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
// w.tryLock能获取到锁,说明该线程没有在运行,因为runWorker中执行任务会先lock,
// 因此保证了中断的肯定是空闲的线程。
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
}
finally {
mainLock.unlock();
}
}
void interruptIfStarted() {
Thread t;
// 初始化时state == -1
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}

Java 线程池(ThreadPoolExecutor)原理解析的相关教程结束。

《Java 线程池(ThreadPoolExecutor)原理解析.doc》

下载本文的Word格式文档,以方便收藏与打印。