设计模式实战系列之@Builder和建造者模式

2022-10-19,,,,

前言

备受争议的Lombok,有的人喜欢它让代码更整洁,有的人不喜欢它,巴拉巴拉一堆原因。在我看来Lombok唯一的缺点可能就是需要安装插件了,但是对于业务开发的项目来说,它的优点远远超过缺点。

我们可以看一下,有多少项目使用了Lombok(数量还在疯涨中...)

尽管如此,我们今天也只是单纯的来看一下@Builder()这个东西

@Builder的使用

使用@Builder修饰类

@Data
@Builder
public class UserDO { private Long id; private String name;
}

使用建造模式创建类

@Test
public void test() {
UserDO userDO = UserDO.builder()
.id(1L)
.name("iisheng")
.build();
System.out.println(userDO);
}

编译后源码

执行javac -cp ~/lombok.jar UserDO.java -verbose.java编译成.class文件。

通过IDE查看该.class源码

下面展示的是被我处理后的源码,感兴趣的同学,可以自己执行上面命令,查看完整源码

public class UserDO {
private Long id;
private String name; public String toString() {
return "UserDO(id="
+ this.getId() + ", name=" + this.getName() + ")";
} UserDO(Long var1, String var2) {
this.id = var1;
this.name = var2;
} public static UserDO.UserDOBuilder builder() {
return new UserDO.UserDOBuilder();
} private UserDO() {
} public static class UserDOBuilder {
private Long id;
private String name; UserDOBuilder() {
} public UserDO.UserDOBuilder id(Long var1) {
this.id = var1;
return this;
} public UserDO.UserDOBuilder name(String var1) {
this.name = var1;
return this;
} public UserDO build() {
return new UserDO(this.id, this.name);
}
}
}

由此,我们可以看出来Builder的实现步骤:

UserDO中创建静态UserDOBuilder
编写设置属性方法,返回UserDOBuilder对象
编写build()方法,返回UserDO对象

是不是很简单?我曾经看过不知道哪个大佬说的一句话,整洁的代码不是说,行数更少,字数更少,而是阅读起来逻辑更清晰。所以,我觉得,哪怕我们不用@Builder,也应该多用这种建造者模式。

是时候看看什么是建造者模式了!

建造者模式

UML类图

这是大部分书籍网络中的建造者模式类图

产品类

public class Product {

    private String name;

    private Integer val;

    Product(String name, Integer val) {
this.name = name;
this.val = val;
} @Override
public String toString() {
return "Product is " + name + " value is " + val;
}
}

抽象建造者

public abstract class Builder {

    protected Integer val;

    protected String name;

    // 设置产品不同部分,以获得不同的产品
public abstract void setVal(Integer val); // 设置名字 公用方法
public void setName(String name) {
this.name = name;
} // 建造产品
public abstract Product buildProduct();
}

具体建造者

public class ConcreteBuilder extends Builder {

    @Override
public void setVal(Integer val) {
/**
* 产品类内部的逻辑
* 实际存储的值是 val + 100
*/
this.val = val + 100;
} @Override
// 组建一个产品
public Product buildProduct() {
// 这块还可以写特殊的校验逻辑
return new Product(name, val);
}
}

导演类

public class Director {

    private Builder builder = new ConcreteBuilder();

    public Product getAProduct() {
// 设置不同的零件,产生不同的产品
builder.setName("ProductA");
builder.setVal(2);
return builder.buildProduct();
}
}

我更喜欢这样的建造者模式类图

Product的创建,也依赖于Builder。代码只需要将上面的ProductConcreteBuilder调整一下即可。

调整后的产品类

public class Product {

    private String name;

    private Integer val;

    Product(Builder builder) {
this.name = builder.name;
this.val = builder.val;
} @Override
public String toString() {
return "Product is " + name + " value is " + val;
}
}

这代码只是将构造方法改了,使用Builder来创建Product对象。

调整后的具体建造者

public class ConcreteBuilder extends Builder {

    @Override
public void setVal(Integer val) {
/**
* 产品类内部的逻辑
* 实际存储的值是 val + 100
*/
this.val = val + 100;
} @Override
// 组建一个产品
public Product buildProduct() {
// 这块还可以写特殊的校验逻辑
return new Product(this);
}
}

相应的使用带BuilderProduct的构造方法。

JDK中的建造者模式

StringBuilder (截取部分源码)

抽象建造者

abstract class AbstractStringBuilder implements Appendable, CharSequence {

    /**
* The value is used for character storage.
*/
char[] value; /**
* The count is the number of characters used.
*/
int count; public AbstractStringBuilder append(String str) {
if (str == null)
return appendNull();
int len = str.length();
ensureCapacityInternal(count + len);
str.getChars(0, len, value, count);
count += len;
return this;
} // Documentation in subclasses because of synchro difference
@Override
public AbstractStringBuilder append(CharSequence s) {
if (s == null)
return appendNull();
if (s instanceof String)
return this.append((String)s);
if (s instanceof AbstractStringBuilder)
return this.append((AbstractStringBuilder)s); return this.append(s, 0, s.length());
} public AbstractStringBuilder delete(int start, int end) {
if (start < 0)
throw new StringIndexOutOfBoundsException(start);
if (end > count)
end = count;
if (start > end)
throw new StringIndexOutOfBoundsException();
int len = end - start;
if (len > 0) {
System.arraycopy(value, start+len, value, start, count-end);
count -= len;
}
return this;
}
}

具体建造者

public final class StringBuilder
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
{
@Override
public StringBuilder append(String str) {
super.append(str);
return this;
} @Override
public StringBuilder append(CharSequence s) {
super.append(s);
return this;
} /**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
*/
@Override
public StringBuilder delete(int start, int end) {
super.delete(start, end);
return this;
}
}

StringBuilder中的建造者模式比较简单,但是我的确没找到StringBuilder非要用建造者模式的原因,或许就是想让我们写下面这样的代码?

public static void main(String[] args) {
StringBuilder sb = new StringBuilder();
sb.append("Love ")
.append("iisheng !")
.insert(0, "I "); System.out.println(sb);
}

但是我希望你能通过StringBuilder,感受一下建造者模式的气息

Guava Cache中的建造者模式

如何使用 Guava Cache?

public static void main(String[] args) {

    LoadingCache<String, Integer> cache = CacheBuilder.newBuilder()
// 最多存放十个数据
.maximumSize(10)
// 缓存10秒
.expireAfterWrite(10, TimeUnit.SECONDS)
.build(new CacheLoader<String, Integer>() {
// 默认返回-1,也可以是查询操作,如从DB查询
@Override
public Integer load(String key) throws Exception {
return -1;
}
}); // 只查询缓存,没有命中,即返回 null
System.out.println(cache.getIfPresent("key1"));
// put数据,放在缓存中
cache.put("key1", 1);
// 再次查询,已经存在缓存中
System.out.println(cache.getIfPresent("key1")); //查询缓存,未命中,调用load方法,返回 -1
try {
System.out.println(cache.get("key2"));
} catch (ExecutionException e) {
e.printStackTrace();
} }

下面是截取建造者模式相关的部分代码

产品接口

@DoNotMock("Use CacheBuilder.newBuilder().build()")
@GwtCompatible
public interface Cache<K, V> { @Nullable
V getIfPresent(@CompatibleWith("K") Object key); V get(K key, Callable<? extends V> loader) throws ExecutionException; void put(K key, V value); long size(); ConcurrentMap<K, V> asMap(); void cleanUp();
}

另一个产品接口

@GwtCompatible
public interface LoadingCache<K, V> extends Cache<K, V>, Function<K, V> { V get(K key) throws ExecutionException; V getUnchecked(K key); void refresh(K key); @Deprecated
@Override
V apply(K key); @Override
ConcurrentMap<K, V> asMap();
}

产品实现类

static class LocalManualCache<K, V> implements Cache<K, V>, Serializable {

    final LocalCache<K, V> localCache;

    LocalManualCache(CacheBuilder<? super K, ? super V> builder) {
this(new LocalCache<K, V>(builder, null));
} private LocalManualCache(LocalCache<K, V> localCache) {
this.localCache = localCache;
} // Cache methods @Override
public @Nullable V getIfPresent(Object key) {
return localCache.getIfPresent(key);
} @Override
public V get(K key, final Callable<? extends V> valueLoader) throws ExecutionException {
checkNotNull(valueLoader);
return localCache.get(
key,
new CacheLoader<Object, V>() {
@Override
public V load(Object key) throws Exception {
return valueLoader.call();
}
});
} @Override
public void put(K key, V value) {
localCache.put(key, value);
} @Override
public long size() {
return localCache.longSize();
} @Override
public ConcurrentMap<K, V> asMap() {
return localCache;
} @Override
public void cleanUp() {
localCache.cleanUp();
} // Serialization Support private static final long serialVersionUID = 1; Object writeReplace() {
return new ManualSerializationProxy<>(localCache);
}
}

另一个产品实现类

static class LocalLoadingCache<K, V> extends LocalManualCache<K, V>
implements LoadingCache<K, V> { LocalLoadingCache(
CacheBuilder<? super K, ? super V> builder, CacheLoader<? super K, V> loader) {
super(new LocalCache<K, V>(builder, checkNotNull(loader)));
} // LoadingCache methods
@Override
public V get(K key) throws ExecutionException {
return localCache.getOrLoad(key);
} @Override
public V getUnchecked(K key) {
try {
return get(key);
} catch (ExecutionException e) {
throw new UncheckedExecutionException(e.getCause());
}
} @Override
public void refresh(K key) {
localCache.refresh(key);
} @Override
public final V apply(K key) {
return getUnchecked(key);
} // Serialization Support
private static final long serialVersionUID = 1; @Override
Object writeReplace() {
return new LoadingSerializationProxy<>(localCache);
}
}

实际产品实现类LocalCache

上面两个产品类实际上,内部使用的是LocalCache来存储数据。我们再看下LocalCache的实现。

LocalCache继承AbstractCache,我们先看AbstractCache

@GwtCompatible
public abstract class AbstractCache<K, V> implements Cache<K, V> { /** Constructor for use by subclasses. */
protected AbstractCache() {} @Override
public V get(K key, Callable<? extends V> valueLoader) throws ExecutionException {
throw new UnsupportedOperationException();
} @Override
public void put(K key, V value) {
throw new UnsupportedOperationException();
} @Override
public void cleanUp() {} @Override
public long size() {
throw new UnsupportedOperationException();
} @Override
public ConcurrentMap<K, V> asMap() {
throw new UnsupportedOperationException();
} }

再来看,LocalCache

@GwtCompatible(emulated = true)
class LocalCache<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> { /** How long after the last write to an entry the map will retain that entry. */
final long expireAfterWriteNanos; /** The default cache loader to use on loading operations. */
final @Nullable CacheLoader<? super K, V> defaultLoader; /**
* Creates a new, empty map with the specified strategy, initial capacity and concurrency level.
*/
LocalCache(
CacheBuilder<? super K, ? super V> builder, @Nullable CacheLoader<? super K, V> loader) {
concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS); maxWeight = builder.getMaximumWeight();
weigher = builder.getWeigher();
expireAfterAccessNanos = builder.getExpireAfterAccessNanos();
expireAfterWriteNanos = builder.getExpireAfterWriteNanos();
refreshNanos = builder.getRefreshNanos(); defaultLoader = loader; int initialCapacity = Math.min(builder.getInitialCapacity(), MAXIMUM_CAPACITY);
if (evictsBySize() && !customWeigher()) {
initialCapacity = (int) Math.min(initialCapacity, maxWeight);
} // Find the lowest power-of-two segmentCount that exceeds concurrencyLevel, unless
// maximumSize/Weight is specified in which case ensure that each segment gets at least 10
// entries. The special casing for size-based eviction is only necessary because that eviction
// happens per segment instead of globally, so too many segments compared to the maximum size
// will result in random eviction behavior.
int segmentShift = 0;
int segmentCount = 1;
while (segmentCount < concurrencyLevel && (!evictsBySize() || segmentCount * 20 <= maxWeight)) {
++segmentShift;
segmentCount <<= 1;
}
this.segmentShift = 32 - segmentShift;
segmentMask = segmentCount - 1; this.segments = newSegmentArray(segmentCount);
}
}

建造者

@GwtCompatible(emulated = true)
public final class CacheBuilder<K, V> { long maximumSize = UNSET_INT; long expireAfterWriteNanos = UNSET_INT; Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; public CacheBuilder<K, V> maximumSize(long maximumSize) {
checkState(
this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize);
checkState(
this.maximumWeight == UNSET_INT,
"maximum weight was already set to %s",
this.maximumWeight);
checkState(this.weigher == null, "maximum size can not be combined with weigher");
checkArgument(maximumSize >= 0, "maximum size must not be negative");
this.maximumSize = maximumSize;
return this;
} public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
checkState(
expireAfterWriteNanos == UNSET_INT,
"expireAfterWrite was already set to %s ns",
expireAfterWriteNanos);
checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
this.expireAfterWriteNanos = unit.toNanos(duration);
return this;
} public CacheBuilder<K, V> recordStats() {
statsCounterSupplier = CACHE_STATS_COUNTER;
return this;
} public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
checkWeightWithWeigher();
checkNonLoadingCache();
return new LocalCache.LocalManualCache<>(this);
} public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
CacheLoader<? super K1, V1> loader) {
checkWeightWithWeigher();
return new LocalCache.LocalLoadingCache<>(this, loader);
} }

Guava Cache的代码还是蛮复杂的,来一张UML图,便于理解

LoadingCache接口继承了Cache接口,两个接口都定义了缓存的基本方法
CacheLoaderLocalCache的成员变量
LocalCache继承AbstractMap,是真正意义上的产品类
LocalManualCacheCacheBuilderbuild()方法产生的对象的类,LocalManualCache因为有LocalCache作为成员变量,使得它成为了产品类,LocalManualCache实现了Cache接口
LocalLoadingCache继承了LocalManualCache,是CacheBuilderbuild(CacheLoader<? super K1, V1> loader)方法产生的对象的类,LocalLoadingCache实现了LoadingCache接口

总结

什么时候适合使用建造者模式?

创建对象参数过多的时候

创建一个有很多属性的对象,如果参数在构造方法中写,看起来很乱,一长串不说,还很容易写错。

对象的部分属性是可选择的时候

创建的对象有很多属性是可选择的那种,常见的比如配置类等,不同使用者有不同的配置。

对象创建完成后,就不能修改内部属性的时候

不提供set()方法,使用建造者模式一次性把对象创建完成。

建造者模式和工厂模式的区别是什么?

建造者模式,通过设置不同的可选参数,“定制化”的创建不同的对象
工厂模式,是直接创建不同但是相关类型的对象(继承同一父类或者接口的一组子类)

最后想说的

@Builder想到的建造者模式,然后看了StringBuilder以及Guava Cache的源码,其中还是有很多值得我们学习的地方。

建造者模式,可能不同的人有不同的理解,不同的实现有不同的方法,但是我们只有深刻的理解了其中的设计思想,才不至于在项目中生搬硬套,才能灵活运用。

参考文献:

[1]:《设计模式之禅》

[2]:《Effective Java中文版》

[3]:《设计模式之美 建造者模式》

欢迎关注个人微信公众号【如逆水行舟】,用心输出基础、算法、源码系列文章。

设计模式实战系列之@Builder和建造者模式的相关教程结束。

《设计模式实战系列之@Builder和建造者模式.doc》

下载本文的Word格式文档,以方便收藏与打印。