[CF1519C] Berland Regional (数论分块)

2022-10-17,,

题面

有 n 个学生和 n 所大学,每个学生在其中一所大学中学习,且各有一个能力值

s

i

s_i

si​ 。

某次组队打比赛的召集令会给一个数字 k ,表示团队数量。然后每所大学会先把自己的所有学生按照

a

i

a_i

ai​ 从大到小排序,选前

k

k

k 个组个队,前

k

+

1

k+1

k+1 到

2

k

2k

2k 个组个队,……剩下最后不足

k

k

k 个学生,这些学生就不能组队。

每次召集的总能力值为所有组出来的队伍的每个学生的能力值之和。现在有

n

n

n 次召集令,给出的

k

k

k 分别是 1~n,分别求每次召集的总能力值。

题解

我这个做法被 nlogn 做法吊打,本愧于过此题,然所用方法有点思维,不如写来搏之一笑。

分别求每个学生的贡献。

假设当前学生在他(她)的大学里排名为倒数第

y

y

y ,而大学里总共

x

x

x 个学生,那么该学生对数字为

k

k

k 的召集令有贡献当且仅当

x
 ⁣ ⁣ ⁣ ⁣

m

o

d

  

k

<

y

x\!\!\!\!\mod k<y

xmodk<y
变一下式子:

x

x

k

k

<

y

x

y

<

x

k

k

x

y

k

<

x

k

x-\left\lfloor \frac{x}{k}\right\rfloor*k<y\\ ~~\Leftrightarrow~~ x-y<\left\lfloor \frac{x}{k}\right\rfloor*k\\ ~~\Leftrightarrow~~ \left\lfloor \frac{x-y}{k}\right\rfloor<\left\lfloor \frac{x}{k}\right\rfloor

x−⌊kx​⌋∗k<y  ⇔  x−y<⌊kx​⌋∗k  ⇔  ⌊kx−y​⌋<⌊kx​⌋

如果我们已知

x

k

=

d

\left\lfloor \frac{x}{k}\right\rfloor=d

⌊kx​⌋=d,那么

x

y

k

<

d

x

y

<

d

k

x

y

d

<

k

\left\lfloor \frac{x-y}{k}\right\rfloor<d\\ ~~\Leftrightarrow~~ x-y<dk\\ ~~\Leftrightarrow~~ \left\lfloor \frac{x-y}{d}\right\rfloor<k

⌊kx−y​⌋<d  ⇔  x−y<dk  ⇔  ⌊dx−y​⌋<k

好,这是个关于

k

k

k 的范围的表达式了,由于我们知道

x

k

\left\lfloor \frac{x}{k}\right\rfloor

⌊kx​⌋ 随着

k

k

k 的不同只有大约

x

\sqrt x

x

​ 个取值,因此我们可以数论分块枚举,每次枚举到一个区间

[

l

,

r

]

[l,r]

[l,r] 和

d

d

d,就对答案序列的

[

max

(

x

y

d

+

1

,

l

)

,

r

]

[\max(\left\lfloor \frac{x-y}{d}\right\rfloor+1,l),r]

[max(⌊dx−y​⌋+1,l),r] 产生贡献。

对每个学生都计算一次,复杂度

O

(

n

n

)

O(n\sqrt n)

O(nn

​)。

CODE

#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
int a[MAXN];
vector<int> u[MAXN];
LL sm[MAXN];
bool cmp(int x,int y) {return a[x] > a[y];}
int main() {
int T = read();
while(T --) {
n = read();
for(int i = 1;i <= n;i ++) u[i].clear(),sm[i] = 0;
for(int i = 1;i <= n;i ++) {
s = read(); u[s].push_back(i);
}
for(int i = 1;i <= n;i ++) {
a[i] = read();
}
for(int i = 1;i <= n;i ++) {
sort(u[i].begin(),u[i].end(),cmp);
int X = u[i].size();
for(int j = 0,nm = X;j < (int)u[i].size();j ++,nm --) {
int con = a[u[i][j]];
sm[1] += con; sm[nm+1] -= con;
for(int l = nm+1,r = 1;l <= X;l = r+1) {
r = X/(X/l); int d = X / l;
int ll = max(l,((X-nm)/d) + 1);
if(ll <= r) {
sm[ll] += con; sm[r+1] -= con;
}
}
}
}
for(int i = 1;i <= n;i ++) {
sm[i] += sm[i-1];
printf("%lld ",sm[i]);
}ENDL;
}
return 0;
}

[CF1519C] Berland Regional (数论分块)的相关教程结束。

《[CF1519C] Berland Regional (数论分块).doc》

下载本文的Word格式文档,以方便收藏与打印。