Uboot启动流程分析(二)

2022-12-11,,,

1、前言

在前面的文章《Uboot启动流程分析(一)》中,链接如下:

https://www.cnblogs.com/Cqlismy/p/12000889.html

已经简单地分析了low_level_init函数,其调用流程如下:

save_boot_params_ret
|
cpu_init_crit
|   |
|   lowlevel_init
|   |
|   s_init
|
_main

接下来,则继续往下分析_main函数。

2、_main函数

在save_boot_params_ret的最后,会运行bl _main这句代码,Uboot则将会跳转到_main函数中去运行,该函数的定义在arch/arm/lib/crt0.S文件中,_main函数的功能已经在文件中注释得很清楚了,先来看看_main函数实现的功能是什么,注释如下:

/*
* This file handles the target-independent stages of the U-Boot
* start-up where a C runtime environment is needed. Its entry point
* is _main and is branched into from the target's start.S file.
*
* _main execution sequence is:
*
* 1. Set up initial environment for calling board_init_f().
* This environment only provides a stack and a place to store
* the GD ('global data') structure, both located in some readily
* available RAM (SRAM, locked cache...). In this context, VARIABLE
* global data, initialized or not (BSS), are UNAVAILABLE; only
* CONSTANT initialized data are available. GD should be zeroed
* before board_init_f() is called.
*
* 2. Call board_init_f(). This function prepares the hardware for
* execution from system RAM (DRAM, DDR...) As system RAM may not
* be available yet, , board_init_f() must use the current GD to
* store any data which must be passed on to later stages. These
* data include the relocation destination, the future stack, and
* the future GD location.
*
* 3. Set up intermediate environment where the stack and GD are the
* ones allocated by board_init_f() in system RAM, but BSS and
* initialized non-const data are still not available.
*
* 4a.For U-Boot proper (not SPL), call relocate_code(). This function
* relocates U-Boot from its current location into the relocation
* destination computed by board_init_f().
*
* 4b.For SPL, board_init_f() just returns (to crt0). There is no
* code relocation in SPL.
*
* 5. Set up final environment for calling board_init_r(). This
* environment has BSS (initialized to 0), initialized non-const
* data (initialized to their intended value), and stack in system
* RAM (for SPL moving the stack and GD into RAM is optional - see
* CONFIG_SPL_STACK_R). GD has retained values set by board_init_f().
*
* 6. For U-Boot proper (not SPL), some CPUs have some work left to do
* at this point regarding memory, so call c_runtime_cpu_setup.
*
* 7. Branch to board_init_r().
*
* For more information see 'Board Initialisation Flow in README.
*/

从注释中,我们可以大概知道_main函数的执行顺序为:

先设置用于调用board_init_f()函数的初始环境,该环境仅仅是提供了堆栈和存储位置GD('global data')结构,两者都是位于可以使用的RAM(SRAM,locked cache...)中,在调用board_init_f()函数前,GD应该被清0;
调用board_init_f()函数,该函数的功能为从system RAM(DRAM,DDR...)中执行准备硬件,当system RAM还不能够使用的时,必须要使用目前的GD存储传递到后续阶段的所有数据,这些数据包括重定位的目标,将来的堆栈和GD的位置;
设置中间环境,其中堆栈和GD是由board_init_f()函数在system RAM中进行分配的,但此时的bss和初始化的非常量仍然不能使用;
对于正常的uboot引导(非SPL),调用relocate_code()函数,该函数的功能将uboot从当前的位置重新转移到由board_init_f()函数计算的目标位置;
对于SPL,board_init_f()函数仅仅是返回(crt0),没有代码的重定位;
设置用于调用board_init_r()函数的最终环境,该环境将有bss段(初始化为0),初始化非常量数据(初始化为预期值),并入栈到system RAM中,GD保留了board_init_f()函数设置的值;
为了使uboot正常运行(非SPL),某些CPU还有一些关于内存的工作要做,调用c_runtime_cpu_setup()函数;
调用board_init_r()函数。

_main函数的定义如下所示:

ENTRY(_main)

/*
* Set up initial C runtime environment and call board_init_f(0).
*/ #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
ldr sp, =(CONFIG_SPL_STACK)
#else
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR) //sp指针指向CONFIG_SYS_INIT_SP_ADDR(0x0091FF00)
#endif
#if defined(CONFIG_CPU_V7M) /* v7M forbids using SP as BIC destination */
mov r3, sp
bic r3, r3, #
mov sp, r3
#else
bic sp, sp, # /* 8-byte alignment for ABI compliance */
#endif
mov r0, sp //将sp指针保存到r0寄存器,此时r0的值为0x0091FF00
bl board_init_f_alloc_reserve //调用函数board_init_f_alloc_reserve,参数为r0的值
mov sp, r0 //将函数返回值写到sp指针,r0的值为0x0091FA00
/* set up gd here, outside any C code */
mov r9, r0 //将r0寄存器的值保存到r9寄存器,也就是gd结构体的地址,r9 = 0x0091FA00
bl board_init_f_init_reserve //调用board_init_f_init_reserve,参数为r0的值0x0091FA00 mov r0, # //将r0寄存器的值设置为0
bl board_init_f //调用board_init_f函数 #if ! defined(CONFIG_SPL_BUILD) /*
* Set up intermediate environment (new sp and gd) and call
* relocate_code(addr_moni). Trick here is that we'll return
* 'here' but relocated.
*/ ldr sp, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */ //获取新的sp指针值
#if defined(CONFIG_CPU_V7M) /* v7M forbids using SP as BIC destination */
mov r3, sp
bic r3, r3, #
mov sp, r3
#else
bic sp, sp, # /* 8-byte alignment for ABI compliance */ //sp指针8字节对齐
#endif
ldr r9, [r9, #GD_BD] /* r9 = gd->bd */ //获取gd->bd的值
sub r9, r9, #GD_SIZE /* new GD is below bd */ //r9 = r9 - GD_SIZE,r9 = gd->new_gd adr lr, here /* 获取here的链接地址 */
ldr r0, [r9, #GD_RELOC_OFF] /* r0 = gd->reloc_off */ //r0保存重定位的偏移量
add lr, lr, r0 //lr = lr + r0,here的链接地址需要加上偏移,因为uboot将被重定位
#if defined(CONFIG_CPU_V7M)
orr lr, # /* As required by Thumb-only */
#endif
ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */ //r0保存重定位的地址
b relocate_code //跳转到relocate_code函数
here:
/*
* now relocate vectors
*/ bl relocate_vectors /* Set up final (full) environment */ bl c_runtime_cpu_setup /* we still call old routine here */
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_FRAMEWORK)
# ifdef CONFIG_SPL_BUILD
/* Use a DRAM stack for the rest of SPL, if requested */
bl spl_relocate_stack_gd
cmp r0, #
movne sp, r0
movne r9, r0
# endif
ldr r0, =__bss_start /* this is auto-relocated! */ #ifdef CONFIG_USE_ARCH_MEMSET
ldr r3, =__bss_end /* this is auto-relocated! */
mov r1, #0x00000000 /* prepare zero to clear BSS */ subs r2, r3, r0 /* r2 = memset len */
bl memset
#else
ldr r1, =__bss_end /* this is auto-relocated! */
mov r2, #0x00000000 /* prepare zero to clear BSS */ clbss_l:cmp r0, r1 /* while not at end of BSS */
#if defined(CONFIG_CPU_V7M)
itt lo
#endif
strlo r2, [r0] /* clear 32-bit BSS word */
addlo r0, r0, # /* move to next */
blo clbss_l
#endif #if ! defined(CONFIG_SPL_BUILD)
bl coloured_LED_init
bl red_led_on
#endif
/* call board_init_r(gd_t *id, ulong dest_addr) */
mov r0, r9 /* gd_t */ //设置第一个参数值gd指针
ldr r1, [r9, #GD_RELOCADDR] /* dest_addr */ //设置第二个参数值gd->relocaddr
/* call board_init_r */
#if defined(CONFIG_SYS_THUMB_BUILD)
ldr lr, =board_init_r /* this is auto-relocated! */
bx lr
#else
ldr pc, =board_init_r /* this is auto-relocated! */ //调用board_init_r函数
#endif
/* we should not return here. */
#endif ENDPROC(_main)

_main函数的实现比较复杂,需要对其分部分进行分析。

第一部分,首先是设置初始化C运行环境,然后调用board_init_f(0)函数,功能实现的代码如下:

/*
* Set up initial C runtime environment and call board_init_f(0).
*/ #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
ldr sp, =(CONFIG_SPL_STACK)
#else
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR) //sp指针指向CONFIG_SYS_INIT_SP_ADDR(0x0091FF00)
#endif
#if defined(CONFIG_CPU_V7M) /* v7M forbids using SP as BIC destination */
mov r3, sp
bic r3, r3, #
mov sp, r3
#else
bic sp, sp, # /* 8-byte alignment for ABI compliance */
#endif
mov r0, sp //将sp指针保存到r0寄存器,此时r0的值为0x0091FF00
bl board_init_f_alloc_reserve //调用函数board_init_f_alloc_reserve,参数为r0的值
mov sp, r0 //将函数返回值写到sp指针,r0的值为0x0091FA00
/* set up gd here, outside any C code */
mov r9, r0 //将r0寄存器的值保存到r9寄存器,也就是gd结构体的地址,r9 = 0x0091FA00
bl board_init_f_init_reserve //调用board_init_f_init_reserve,参数为r0的值0x0091FA00 mov r0, # //将r0寄存器的值设置为0
bl board_init_f //调用board_init_f函数

从上面的代码中可以知道,_main函数进来后,设置sp指针的值为CONFIG_SYS_INIT_SP_ADDR,并对其进行8字节对齐,然后将sp指针的值保存到r0寄存器中,接下来开始调用board_init_f_alloc_reserve函数,传入的参数为r0寄存器的值,也就是sp指针,board_init_f_alloc_reserve函数的定义在common/init/board_init.c文件中,定义如下所示:

ulong board_init_f_alloc_reserve(ulong top)    //top = 0x0091FF00
{
/* Reserve early malloc arena */
#if defined(CONFIG_SYS_MALLOC_F)
top -= CONFIG_SYS_MALLOC_F_LEN; //top = top - 0x400,此时top = 0x0091FF00 - 0x400 = 0x0091FB00
#endif
/* LAST : reserve GD (rounded up to a multiple of 16 bytes) */ //sizeof(struct global_data) = 248
top = rounddown(top-sizeof(struct global_data), );
//top = top - sizeof(struct global_data),16字节对齐
//top = 0x0091FB00 - 248 - 8 = 0x0091FA00 return top;
}

在上面的代码中,可以知道,board_init_f_alloc_reserve()函数主要是留出早期的malloc内存区域和global_data结构体内存区域,对于CONFIG_SYS_MALLOC_F_LEN宏定义在文件include/generated/autoconf.h文件中,为0x400,而sizeof(struct global_data)为GD_SIZE宏的值,为248,并且top的值需要16字节对齐,该函数返回top指针的值,函数调用后,OCRAM的内存分配如下所示:

board_init_f_alloc_reserve()函数是具有返回值,将top=0x0091FA00返回,继续往下分析,因此r0寄存器的值为0x0091FA00,并将r0寄存器的值回写sp指针,此时,sp=0x0091FA00,另外,r0寄存器的值也写到了r9寄存器,因此r9=0x0091FA00,为啥要将分配好的global_data结构体首地址写到r9寄存器呢?

在uboot源码文件arch/arm/include/asm/global_data.h中,具有下面的两个宏定义:

#ifdef CONFIG_ARM64
#define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("x18")
#else
#define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r9")
#endif
#endif

对于ARM32的CPU,uboot定义了一个指向gd_t类型的gd指针,gd是一个全局变量,存放在r9寄存器,gd_t的类型定义在文件include/asm-generic/global_data.h中,其实就是struct global_data,该结构体的成员比较多,定义如下:

typedef struct global_data {
bd_t *bd; //指向bd_t结构体内存空间
unsigned long flags;
unsigned int baudrate;
unsigned long cpu_clk; /* CPU clock in Hz! */
unsigned long bus_clk;
/* We cannot bracket this with CONFIG_PCI due to mpc5xxx */
unsigned long pci_clk;
unsigned long mem_clk;
#if defined(CONFIG_LCD) || defined(CONFIG_VIDEO)
unsigned long fb_base; /* Base address of framebuffer mem */
#endif
#if defined(CONFIG_POST) || defined(CONFIG_LOGBUFFER)
unsigned long post_log_word; /* Record POST activities */
unsigned long post_log_res; /* success of POST test */
unsigned long post_init_f_time; /* When post_init_f started */
#endif
#ifdef CONFIG_BOARD_TYPES
unsigned long board_type;
#endif
unsigned long have_console; /* serial_init() was called */ //标志位:是否具有console
#ifdef CONFIG_PRE_CONSOLE_BUFFER
unsigned long precon_buf_idx; /* Pre-Console buffer index */
#endif
unsigned long env_addr; /* Address of Environment struct */
unsigned long env_valid; /* Checksum of Environment valid? */ unsigned long ram_top; /* Top address of RAM used by U-Boot */ //DRAM的最终地址 unsigned long relocaddr; /* Start address of U-Boot in RAM */ //uboot重定位的地址
phys_size_t ram_size; /* RAM size */ //DRAM的大小
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
#define MEM_RESERVE_SECURE_SECURED 0x1
#define MEM_RESERVE_SECURE_MAINTAINED 0x2
#define MEM_RESERVE_SECURE_ADDR_MASK (~0x3)
/*
* Secure memory addr
* This variable needs maintenance if the RAM base is not zero,
* or if RAM splits into non-consecutive banks. It also has a
* flag indicating the secure memory is marked as secure by MMU.
* Flags used: 0x1 secured
* 0x2 maintained
*/
phys_addr_t secure_ram;
#endif
unsigned long mon_len; /* monitor len */ //整个uboot的长度
unsigned long irq_sp; /* irq stack pointer */
unsigned long start_addr_sp; /* start_addr_stackpointer */ //栈指针
unsigned long reloc_off; //uboot重定位的偏移
struct global_data *new_gd; /* relocated global data */ //uboot重定位后新的gd_t结构体首地址 #ifdef CONFIG_DM
struct udevice *dm_root; /* Root instance for Driver Model */
struct udevice *dm_root_f; /* Pre-relocation root instance */
struct list_head uclass_root; /* Head of core tree */
#endif
#ifdef CONFIG_TIMER
struct udevice *timer; /* Timer instance for Driver Model */
#endif const void *fdt_blob; /* Our device tree, NULL if none */
void *new_fdt; /* Relocated FDT */
unsigned long fdt_size; /* Space reserved for relocated FDT */
struct jt_funcs *jt; /* jump table */
char env_buf[]; /* buffer for getenv() before reloc. */
#ifdef CONFIG_TRACE
void *trace_buff; /* The trace buffer */
#endif
#if defined(CONFIG_SYS_I2C)
int cur_i2c_bus; /* current used i2c bus */
#endif
#ifdef CONFIG_SYS_I2C_MXC
void *srdata[];
#endif
unsigned long timebase_h;
unsigned long timebase_l;
#ifdef CONFIG_SYS_MALLOC_F_LEN
unsigned long malloc_base; /* base address of early malloc() */ //早期malloc相关成员
unsigned long malloc_limit; /* limit address */
unsigned long malloc_ptr; /* current address */
#endif
#ifdef CONFIG_PCI
struct pci_controller *hose; /* PCI hose for early use */
phys_addr_t pci_ram_top; /* top of region accessible to PCI */
#endif
#ifdef CONFIG_PCI_BOOTDELAY
int pcidelay_done;
#endif
struct udevice *cur_serial_dev; /* current serial device */
struct arch_global_data arch; /* architecture-specific data */
#ifdef CONFIG_CONSOLE_RECORD
struct membuff console_out; /* console output */
struct membuff console_in; /* console input */
#endif
#ifdef CONFIG_DM_VIDEO
ulong video_top; /* Top of video frame buffer area */
ulong video_bottom; /* Bottom of video frame buffer area */
#endif
} gd_t;

所以,将r0寄存器的值写到r9寄存器,其实就是设置gd指针的值为0x0x0091FA00,也就是指向在OCRAM中分配的struct global_data结构体的首地址。

接下来,带参调用board_init_f_init_reserve()函数,参数为r0寄存器的值,也就是struct global_data结构体首地址0x0091FA00,board_init_f_init_reserve()函数的定义如下:

void board_init_f_init_reserve(ulong base)
{
struct global_data *gd_ptr;
#ifndef _USE_MEMCPY
int *ptr;
#endif /*
* clear GD entirely and set it up.
* Use gd_ptr, as gd may not be properly set yet.
*/ gd_ptr = (struct global_data *)base; //获取global_data结构体首地址
/* zero the area */
#ifdef _USE_MEMCPY
memset(gd_ptr, '\0', sizeof(*gd)); //将global_data结构体清0操作
#else
for (ptr = (int *)gd_ptr; ptr < (int *)(gd_ptr + ); )
*ptr++ = ;
#endif
/* set GD unless architecture did it already */
#if !defined(CONFIG_ARM)
arch_setup_gd(gd_ptr);
#endif
/* next alloc will be higher by one GD plus 16-byte alignment */
base += roundup(sizeof(struct global_data), ); //指向early_alloc的起始地址0x0091FB00 /*
* record early malloc arena start.
* Use gd as it is now properly set for all architectures.
*/ #if defined(CONFIG_SYS_MALLOC_F)
/* go down one 'early malloc arena' */
gd->malloc_base = base; //设置gd->malloc_base指向early malloc首地址
/* next alloc will be higher by one 'early malloc arena' size */
base += CONFIG_SYS_MALLOC_F_LEN;
#endif
}

在上面的代码中可以看出,该函数主要是将OCRAM中分配的struct global_data结构体区域进行清0操作,另外设置gd->malloc_base成员的值为early malloc区域的首地址。

接下来就是设置r0寄存器的值为0,然后调用board_init_f()函数,传入的参数为r0寄存器的值0,该函数的定义在文件common/board_f.c文件中,该函数实现比较复杂,主要实现的功能是完成DDR、定时器、uboot代码拷贝等,另起篇章进行分析,本篇主要内容是分析_main函数的实现流程。

将board_init_f()函数跳过后,接下来就是到了_main函数的第二部分,设置中间环境(新的sp指针值和gd指针值),并且调用relocate_code函数,代码如下所示:

/*
* Set up intermediate environment (new sp and gd) and call
* relocate_code(addr_moni). Trick here is that we'll return
* 'here' but relocated.
*/ ldr sp, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */ //获取新的sp指针值
#if defined(CONFIG_CPU_V7M) /* v7M forbids using SP as BIC destination */
mov r3, sp
bic r3, r3, #
mov sp, r3
#else
bic sp, sp, # /* 8-byte alignment for ABI compliance */ //sp指针8字节对齐
#endif
ldr r9, [r9, #GD_BD] /* r9 = gd->bd */ //设置新的gd指针值
sub r9, r9, #GD_SIZE /* new GD is below bd */ adr lr, here
ldr r0, [r9, #GD_RELOC_OFF] /* r0 = gd->reloc_off */
add lr, lr, r0
#if defined(CONFIG_CPU_V7M)
orr lr, # /* As required by Thumb-only */
#endif
ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
b relocate_code //跳转到relocate_code函数
here:
/*
* now relocate vectors
*/ bl relocate_vectors

代码执行后,首先是重新对sp指针的值进行赋值,sp = gd->start_addr_sp,在board_init_f()函数中会初始化struct global_data结构体的成员变量,代码中的宏GD_START_ADDR_SP为64,为struct global_data结构体中start_addr_sp指针的偏移量,该成员变量的值为DDR内存中的地址,新的sp指针值和gd指针值将会存放DDR的内存地址,而不再是OCRAM的地址,获取到新的sp指针值后,对其进行8字节对齐,同样,对r9寄存器重新赋值,r9 = gd->bd,在上面说过,r9寄存器里面保存着gd指针的值,此时gd指针的值已经为DDR的内存地址,然后r9 = r9 - GD_SIZE,新的gd指针值在bd下面,在这,就完成了新的sp和gd指针值赋值。

继续往下分析,设置lr寄存器为here,该技巧用于后期执行完其它函数后,进行返回,则直接返回到here处继续执行,宏GD_RELOC_OFF的值为68,设置r0寄存器的值,r0 = gd->reloc_off,lr寄存器的值加上r0寄存器的值,将结果重新赋值给lr寄存器,因为接下来,要开始重新定位uboot代码了,把代码拷贝到DDR中新的内存地址里面去,在uboot.map分析中,可以知道,当前的uboot起始地址为0x87800000,重新定位的代码包括here,因此,需要将lr寄存器的值加上r0寄存器的值,并将新的结果赋给lr寄存器,lr寄存器需要使用的是重新定位后的here。

宏GD_RELOCADDR为48,重新将r0寄存器赋值,r0 = gd->relocaddr,struct global_data结构体中的relocaddr成员变量保存着uboot要拷贝的RAM目标地址,所以,此时r0寄存器中保存着uboot重新定位的目标地址,接下来,带参调用函数relocate_code,传入的参数为r0寄存器的值,该函数的定义在arch/arm/lib/relocate.S文件中。

函数relocate_code调用完成后,返回到here执行,继续调用函数relocate_vectors重新定位中断向量表vectors,该函数的定义也在arch/arm/lib/relocate.S文件中,到这里,第二部分的代码就执行完成了。

继续分析_main函数的第三部分,主要是完成最终的环境设置,并且调用board_init_r()函数,第三部分的代码如下所示:

/* Set up final (full) environment */

    bl    c_runtime_cpu_setup    /* we still call old routine here */
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_FRAMEWORK)
# ifdef CONFIG_SPL_BUILD
/* Use a DRAM stack for the rest of SPL, if requested */
bl spl_relocate_stack_gd
cmp r0, #
movne sp, r0
movne r9, r0
# endif
ldr r0, =__bss_start /* this is auto-relocated! */ #ifdef CONFIG_USE_ARCH_MEMSET
ldr r3, =__bss_end /* this is auto-relocated! */
mov r1, #0x00000000 /* prepare zero to clear BSS */ subs r2, r3, r0 /* r2 = memset len */
bl memset
#else
ldr r1, =__bss_end /* this is auto-relocated! */
mov r2, #0x00000000 /* prepare zero to clear BSS */ clbss_l:cmp r0, r1 /* while not at end of BSS */
#if defined(CONFIG_CPU_V7M)
itt lo
#endif
strlo r2, [r0] /* clear 32-bit BSS word */
addlo r0, r0, # /* move to next */
blo clbss_l
#endif #if ! defined(CONFIG_SPL_BUILD)
bl coloured_LED_init
bl red_led_on
#endif
/* call board_init_r(gd_t *id, ulong dest_addr) */
mov r0, r9 /* gd_t */
ldr r1, [r9, #GD_RELOCADDR] /* dest_addr */
/* call board_init_r */
#if defined(CONFIG_SYS_THUMB_BUILD)
ldr lr, =board_init_r /* this is auto-relocated! */
bx lr
#else
ldr pc, =board_init_r /* this is auto-relocated! */
#endif
/* we should not return here. */
#endif

代码执行后,首先是调用了函数c_runtime_cpu_setup,该函数的定义在文件arch/arm/cpu/armv7/start.S文件中,主要是完成与ARM处理器的配置,定义如下:

ENTRY(c_runtime_cpu_setup)
/*
* If I-cache is enabled invalidate it
*/
#ifndef CONFIG_SYS_ICACHE_OFF
mcr p15, , r0, c7, c5, @ invalidate icache
mcr p15, , r0, c7, c10, @ DSB
mcr p15, , r0, c7, c5, @ ISB
#endif bx lr ENDPROC(c_runtime_cpu_setup)

接下来,则是清除bss段,board_init_r(gd_t *id, ulong dest_addr)函数具有两个参数,第一个参数为gd指针的值,第二个参数为gd->relocaddr,设置完成后,则是调用board_init_r()函数,该函数的定义在文件common/board_r.c文件中。

到这里,基本分析完了_main函数调用的大概流程了,该函数实现的功能非常多,比较复杂,比较重要的包括board_init_f函数、relocate_code函数、relocate_vectors函数和board_init_r函数,这些函数都将分篇章进行分析。

3、小结

大概对_main函数的总体流程以及实现的功能有初步了解后,最后,对_main函数的调用流程思路整理一下,如下所示:

_main
|
board_init_f_alloc_reserve-->reserve gd and early malloc area
|
board_init_f_init_reserve-->initialize global data
|
board_init_f-->initialize ddr,timer...,and fill gd_t
|
relocate_code-->relocate uboot code
|
relocate_vectors-->relocate vectors
|
board_init_r-->calling board_init_r

接下来,将在下一篇文章中对board_init_f函数进行分析。

Uboot启动流程分析(二)的相关教程结束。

《Uboot启动流程分析(二).doc》

下载本文的Word格式文档,以方便收藏与打印。