synchronized原理和偏向锁、轻量级锁、重量级锁的升级过程

2022-07-31,,,,

文章目录

    • Synchronized 同步锁实现原理
    • 升级优化
    • Java 对象头
    • 偏向
      • 为什么引入偏向锁?
      • 作用
      • 偏向锁的撤销(升级)
      • 关闭偏向锁
    • 轻量级锁
      • 作用
      • 关闭自旋锁
    • 锁的优缺点对比
    • 动态编译实现锁消除 / 锁粗化
    • 减小锁粒度
    • Q&A
    • 参考目录

在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性

在 JDK1.5 之前,Java 是依靠 Synchronized 关键字实现锁功能来做到这点的。Synchronized 是 JVM 实现的一种内置锁,锁的获取和释放是由 JVM 隐式实现。

到了 JDK1.5 版本,并发包中新增了 Lock 接口来实现锁功能,它提供了与 Synchronized 关键字类似的同步功能,只是在使用时需要显式获取和释放锁。

Lock 同步锁是基于 Java 实现的,而 Synchronized 是基于底层操作系统的 Mutex Lock 实现的,每次获取和释放锁操作都会带来用户态和内核态的切换,从而增加系统性能开销。因此,在锁竞争激烈的情况下,Synchronized 同步锁在性能上就表现得非常糟糕,它也常被大家称为重量级锁。

到了 JDK1.6 版本之后,Java 对 Synchronized 同步锁做了充分的优化,甚至在某些场景下,它的性能已经超越了 Lock 同步锁。

Synchronized 同步锁实现原理

通常 Synchronized 实现同步锁的方式有两种,一种是修饰方法,一种是修饰方法块。

  // 关键字在实例方法上,锁为当前实例
  public synchronized void method1() {
      // code
  }
  
  // 关键字在代码块上,锁为括号里面的对象
  public void method2() {
      Object o = new Object();
      synchronized (o) {
          // code
      }
  }

反编译:

javac -encoding UTF-8 SyncTest.java  //先运行编译class文件命令

javap -v SyncTest.class //再通过javap打印出字节文件

通过输出的字节码,你会发现:Synchronized 在修饰同步代码块时,是由 monitorenter 和 monitorexit 指令来实现同步的。进入 monitorenter 指令后,线程将持有 Monitor 对象,退出 monitorenter 指令后,线程将释放该 Monitor 对象。

  public void method2();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=2, locals=4, args_size=1
         0: new           #2                  
         3: dup
         4: invokespecial #1                  
         7: astore_1
         8: aload_1
         9: dup
        10: astore_2
        11: monitorenter //monitorenter 指令
        12: aload_2
        13: monitorexit  //monitorexit  指令
        14: goto          22
        17: astore_3
        18: aload_2
        19: monitorexit
        20: aload_3
        21: athrow
        22: return
      Exception table:
         from    to  target type
            12    14    17   any
            17    20    17   any
      LineNumberTable:
        line 18: 0
        line 19: 8
        line 21: 12
        line 22: 22
      StackMapTable: number_of_entries = 2
        frame_type = 255 /* full_frame */
          offset_delta = 17
          locals = [ class com/demo/io/SyncTest, class java/lang/Object, class java/lang/Object ]
          stack = [ class java/lang/Throwable ]
        frame_type = 250 /* chop */
          offset_delta = 4

再来看以下同步方法的字节码,你会发现:当 Synchronized 修饰同步方法时,并没有发现 monitorenter 和 monitorexit 指令,而是出现了一个 ACC_SYNCHRONIZED 标志。

这是因为 JVM 使用了 ACC_SYNCHRONIZED 访问标志来区分一个方法是否是同步方法。当方法调用时,调用指令将会检查该方法是否被设置 ACC_SYNCHRONIZED 访问标志。如果设置了该标志,执行线程将先持有 Monitor 对象,然后再执行方法。在该方法运行期间,其它线程将无法获取到该 Mointor 对象,当方法执行完成后,再释放该 Monitor 对象。

   public synchronized void method1();
    descriptor: ()V
    flags: ACC_PUBLIC, ACC_SYNCHRONIZED // ACC_SYNCHRONIZED 标志
    Code:
      stack=0, locals=1, args_size=1
         0: return
      LineNumberTable:
        line 8: 0

JVM 中的同步是基于进入和退出管程(Monitor)对象实现的。每个对象实例都会有一个 Monitor,Monitor 可以和对象一起创建、销毁。Monitor 是由 ObjectMonitor 实现,而 ObjectMonitor 是由 C++ 的 ObjectMonitor.hpp 文件实现,如下所示:

ObjectMonitor() {
   _header = NULL;
   _count = 0; //记录个数
   _waiters = 0,
   _recursions = 0;
   _object = NULL;
   _owner = NULL;
   _WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet
   _WaitSetLock = 0 ;
   _Responsible = NULL ;
   _succ = NULL ;
   _cxq = NULL ;
   FreeNext = NULL ;
   _EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表
   _SpinFreq = 0 ;
   _SpinClock = 0 ;
   OwnerIsThread = 0 ;
}

当多个线程同时访问一段同步代码时,多个线程会先被存放在 ContentionList 和 _EntryList 集合中,处于 block 状态的线程,都会被加入到该列表。接下来当线程获取到对象的 Monitor 时,Monitor 是依靠底层操作系统的 Mutex Lock 来实现互斥的,线程申请 Mutex 成功,则持有该 Mutex,其它线程将无法获取到该 Mutex,竞争失败的线程会再次进入 ContentionList 被挂起。

如果线程调用 wait() 方法,就会释放当前持有的 Mutex,并且该线程会进入 WaitSet 集合中,等待下一次被唤醒。如果当前线程顺利执行完方法,也将释放 Mutex。

锁升级优化

为了提升性能,JDK1.6 引入了偏向锁、轻量级锁、重量级锁概念,来减少锁竞争带来的上下文切换,而正是新增的 Java 对象头实现了锁升级功能。锁可以升级但不能降级,目的是为了提高获得锁和释放锁的效率。

当 Java 对象被 Synchronized 关键字修饰成为同步锁后,围绕这个锁的一系列升级操作都将和 Java 对象头有关。

Java 对象头

在 JDK1.6 JVM 中,对象实例在堆内存中被分为了三个部分:对象头、实例数据和对齐填充。其中 Java 对象头由 Mark Word、指向类的指针以及数组长度三部分组成。

Mark Word 记录了对象和锁有关的信息。Mark Word 在 64 位 JVM 中的长度是 64bit,我们可以一起看下 64 位 JVM 的存储结构是怎么样的。如下图所示:

(无锁和偏向锁的锁标志位值实际是“01”,轻量级锁的锁标志位值是“00”)

锁升级功能主要依赖于 Mark Word 中的锁标志位和释放偏向锁标志位,Synchronized 同步锁就是从偏向锁开始的,随着竞争越来越激烈,偏向锁升级到轻量级锁,最终升级到重量级锁

偏向锁

为什么引入偏向锁?

HotSpot的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。偏向锁主要用来优化同一线程多次申请同一个锁的竞争。例如:线程操作一个线程安全集合时,同一线程每次都需要获取和释放锁,每次操作都会发生用户态与内核态的切换。

作用

偏向锁的作用就是,当一个线程再次访问这个同步代码或方法时,该线程只需去对象头的 Mark Word 中去判断一下是否有偏向锁指向它的 ID,无需再进入 Monitor 去竞争对象了。当对象被当做同步锁并有一个线程抢到了锁时,锁标志位还是 01,“是否偏向锁”标志位设置为 1,并且记录抢到锁的线程 ID,表示进入偏向锁状态

偏向锁的撤销(升级)

一旦出现其它线程竞争锁资源时,偏向锁就会被撤销。偏向锁的撤销需要等待全局安全点,暂停持有该锁的线程,同时检查该线程是否还在执行该方法,如果是,则升级锁,反之则被其它线程抢占。

下图中红线流程部分为偏向锁获取和撤销流程

关闭偏向锁

偏向锁默认是开启的,如果你确定应用程序里所有的锁通常情况下处于竞争状态,这时我们可以通过添加 JVM 参数关闭偏向锁来调优系统性能,示例代码如下:

-XX:-UseBiasedLocking //关闭偏向锁(默认打开)

轻量级锁

当有另外一个线程竞争获取这个锁时,由于该锁已经是偏向锁,当发现对象头 Mark Word 中的线程 ID 不是自己的线程 ID,就会进行 CAS 操作获取锁,如果获取成功,直接替换 Mark Word 中的线程 ID 为自己的 ID,该锁会保持偏向锁状态;如果获取锁失败,代表当前锁有一定的竞争,偏向锁将升级为轻量级锁。

轻量级锁适用于线程交替执行同步块的场景,绝大部分的锁在整个同步周期内都不存在长时间的竞争

下图中红线流程部分为升级轻量级锁及操作流程:

作用

轻量级锁 CAS 抢锁失败,线程将会被挂起进入阻塞状态。如果正在持有锁的线程在很短的时间内释放资源,那么进入阻塞状态的线程无疑又要申请锁资源。

JVM 提供了一种自旋锁,可以通过自旋方式不断尝试获取锁,从而避免线程被挂起阻塞。这是基于大多数情况下,线程持有锁的时间都不会太长,毕竟线程被挂起阻塞可能会得不偿失。

自旋操作可以大致理解为这样:

for(;;){
    获取锁...
    if(获取成功){
        退出
    } else {
        继续循环
    }
}

称之为自旋

从 JDK1.7 开始,自旋锁默认启用,自旋次数由 JVM 设置决定,这里我不建议设置的重试次数过多,因为 CAS 重试操作意味着长时间地占用 CPU。

自旋锁重试之后如果抢锁依然失败,同步锁就会升级至重量级锁,锁标志位改为 10。在这个状态下,未抢到锁的线程都会进入 Monitor,之后会被阻塞在 _WaitSet 队列中。

下图中红线流程部分为自旋后升级为重量级锁的流程:

关闭自旋锁

在锁竞争不激烈且锁占用时间非常短的场景下,自旋锁可以提高系统性能。旦锁竞争激烈或锁占用的时间过长,自旋锁将会导致大量的线程一直处于 CAS 重试状态,占用 CPU 资源,反而会增加系统性能开销。

在高负载、高并发的场景下,我们可以通过设置 JVM 参数来关闭自旋锁,优化系统性能,示例代码如下:

-XX:-UseSpinning //参数关闭自旋锁优化(默认打开) 
-XX:PreBlockSpin //参数修改默认的自旋次数。JDK1.7后,去掉此参数,由jvm控制

锁的优缺点对比

优点 缺点 适用场景
偏向锁 加锁和解锁不需要额外的消耗,和执行非同步方法相比仅存在纳秒级别的差距 如果线程间存在锁竞争,会带来额外的锁撤销的消耗 适用于只有一个线程访问同步块场景
轻量级锁 竞争的线程不会阻塞,调高了程序的响应速度 如果始终得不到锁竞争的线程,使用自旋会消耗CPU 追求响应时间;同步块执行速度非常快
重量级锁 线程竞争不使用自旋,不会消耗CPU 线程阻塞,响应时间慢 追求吞吐量;同步块执行速度/时间较长

动态编译实现锁消除 / 锁粗化

除了锁升级优化,Java 还使用了编译器对锁进行优化。JIT 编译器在动态编译同步块的时候,借助了一种被称为逃逸分析的技术,来判断同步块使用的锁对象是否只能够被一个线程访问,而没有被发布到其它线程。

确认是的话,那么 JIT 编译器在编译这个同步块的时候不会生成 synchronized 所表示的锁的申请与释放的机器码,即消除了锁的使用。在 Java7 之后的版本就不需要手动配置了,该操作可以自动实现。

锁粗化同理,就是在 JIT 编译器动态编译时,如果发现几个相邻的同步块使用的是同一个锁实例,那么 JIT 编译器将会把这几个同步块合并为一个大的同步块,从而避免一个线程“反复申请、释放同一个锁”所带来的性能开销。

减小锁粒度

除了锁内部优化和编译器优化之外,我们还可以通过代码层来实现锁优化,减小锁粒度就是一种惯用的方法。

当我们的锁对象是一个数组或队列时,集中竞争一个对象的话会非常激烈,锁也会升级为重量级锁。我们可以考虑将一个数组和队列对象拆成多个小对象,来降低锁竞争,提升并行度

Q&A

Q:当对象加了偏向锁后,原来的哈希值放到哪里去了?

A:被覆盖了,回到无锁状态会再添加


Q:synchronized锁只会升级,不会降级。如果系统只在某段时间高并发,升级到了重量级锁,然后系统变成低并发了,那还是重量锁,那岂不是很影响性能。

A:不应该叫锁降级,只是在垃圾回收阶段,即STW时,没有Java线程竞争锁的情况下,会将锁状态重置。

参考目录

参考刘超《Java性能调优实战》,方腾飞《Java并发编程的艺术》

本文地址:https://blog.csdn.net/MariaOzawa/article/details/107665689

《synchronized原理和偏向锁、轻量级锁、重量级锁的升级过程.doc》

下载本文的Word格式文档,以方便收藏与打印。