python区块链基本原型简版实现示例

2022-07-14,,,

说明

本文根据https://github.com/liuchengxu/blockchain-tutorial的内容,用python实现的,但根据个人的理解进行了一些修改,大量引用了原文的内容。文章末尾有"本节完整源码实现地址"。

引言

区块链是 21 世纪最具革命性的技术之一,它仍然处于不断成长的阶段,而且还有很多潜力尚未显现。 本质上,区块链只是一个分布式数据库而已。 不过,使它独一无二的是,区块链是一个公开的数据库,而不是一个私人数据库,也就是说,每个使用它的人都有一个完整或部分的副本。 只有经过其他“数据库管理员”的同意,才能向数据库中添加新的记录。 此外,也正是由于区块链,才使得加密货币和智能合约成为现实。

在本系列文章中,我们将实现一个简化版的区块链,并基于它来构建一个简化版的加密货币。

区块

首先从 “区块” 谈起。在区块链中,真正存储有效信息的是区块(block)。而在比特币中,真正有价值的信息就是交易(transaction)。实际上,交易信息是所有加密货币的价值所在。除此以外,区块还包含了一些技术实现的相关信息,比如版本,当前时间戳和前一个区块的哈希。

不过,我们要实现的是一个简化版的区块链,而不是一个像比特币技术规范所描述那样成熟完备的区块链。所以在我们目前的实现中,区块仅包含了部分关键信息,它的数据结构如下:

class block(object):
    """a block
    attributes:
        _magic_no (int): magic number
        _block_header (block): header of the previous block.
        _transactions (transaction): transactions of the current block.
    """
    magic_no = 0xbcbcbcbc
    def __init__(self, block_header, transactions):
        self._magic_no = self.magic_no
        self._block_header = block_header
        self._transactions = transactions
字段 解释
_magic_no 魔数
_block_header 区块头
_transactions 交易

这里的_magic_no, _block_header, _transactions, 也是比特币区块的构成部分,这里我们简化了一部分信息。在真正的比特币中,区块 的数据结构如下:

field description size
magic no value always 0xd9b4bef9 4 bytes
blocksize number of bytes following up to end of block 4 bytes
blockheader consists of 6 items 80 bytes
transaction counter positive integer vi = varint 1 - 9 bytes
transactions the (non empty) list of transactions -many transactions

区块头

class blockheader(object):
    """ a blockheader
    attributes:
        timestamp (str): creation timestamp of block
        prev_block_hash (str): hash of the previous block.
        hash (str): hash of the current block.
        hash_merkle_root(str): hash of the merkle_root.
        height (int): height of block
        nonce (int): a 32 bit arbitrary random number that is typically used once.
    """
    def __init__(self, hash_merkle_root, height, pre_block_hash=''):
        self.timestamp = str(time.time())
        self.prev_block_hash = pre_block_hash
        self.hash = none
        self.hash_merkle_root = hash_merkle_root
        self.height = height
        self.nonce = none
字段 解释
timestamp 当前时间戳,也就是区块创建的时间
prev_block_hash 前一个块的哈希,即父哈希
hash 当前块头的哈希
hash_merkle_root 区块存储的交易的merkle树的根哈希

我们这里的 timestamp,prev_block_hash, hash,hash_merkle_root, 在比特币技术规范中属于区块头(block header),区块头是一个单独的数据结构。
完整的 比特币的区块头(block header)结构 如下:

field purpose updated when… size (bytes)
version block version number you upgrade the software and it specifies a new version 4
hashprevblock 256-bit hash of the previous block header a new block comes in 32
hashmerkleroot 256-bit hash based on all of the transactions in the block a transaction is accepted 32
time current timestamp as seconds since 1970-01-01t00:00 utc every few seconds 4
bits current target in compact format the difficulty is adjusted 4
nonce 32-bit number (starts at 0) a hash is tried (increments) 4

我们的简化版的区块头里,hash和hash_merkle_root是需要计算的。hash_merkle_root暂且不管留空,它是由区块中的交易信息生成的merkle树的根哈希。
而hash的计算如下:

    def set_hash(self):
        """
        set hash of the header
        """
        data_list = [str(self.timestamp),
                     str(self.prev_block_hash),
                     str(self.hash_merkle_root),
                     str(self.height),
                     str(self.nonce)]
        data = ''.join(data_list)
        self.hash = sum256_hex(data)

区块链

有了区块,下面让我们来实现区块链。本质上,区块链就是一个有着特定结构的数据库,是一个有序,每一个块都连接到前一个块的链表。也就是说,区块按照插入的顺序进行存储,每个块都与前一个块相连。这样的结构,能够让我们快速地获取链上的最新块,并且高效地通过哈希来检索一个块。

class blockchain(object):
    def __init__(self):
        self.blocks = []

这就是我们的第一个区块链!就是一个list。
我们还需要一个添加区块的函数:

    def add_block(self, transactions):
        """
        add a block to block_chain
        """
        last_block = self.blocks[-1]
        prev_hash = last_block.get_header_hash()
        height = len(self.blocks)
        block_header = blockheader('', height, prev_hash)
        block = block(block_header, transactions)
        block.set_header_hash()
        self.blocks.append(block)

为了加入一个新的块,我们必须要有一个已有的块,但是,初始状态下,我们的链是空的,一个块都没有!所以,在任何一个区块链中,都必须至少有一个块。这个块,也就是链中的第一个块,通常叫做创世块(genesis block). 让我们实现一个方法来创建创世块:

    # class blockchain
    def new_genesis_block(self):
        if not self.blocks:
            genesis_block = block.new_genesis_block('genesis_block')
            genesis_block.set_header_hash()
            self.blocks.append(genesis_block)
    # class block
    @classmethod
    def new_genesis_block(cls, coin_base_tx):
        block_header = blockheader.new_genesis_block_header()
        return cls(block_header, coin_base_tx)
    # class blockheader
    @classmethod
    def new_genesis_block_header(cls):
        """
        newgenesisblock creates and returns genesis block
        """
        return cls('', 0, '')

上面分别对应三个函数分别对应链中创世块生成,创世块生成,和创世块头的生成。

创世块高度为0。这里我们暂时还没有交易类,交易暂时用字符串代替。prev_block_hash和hash_merkle_root都暂时留空。

让blockchain支持迭代

    # class blockchain
    def __getitem__(self, index):
        if index < len(self.blocks):
            return self.blocks[index]
        else:
            raise indexerror('index is out of range')

最后再进行简单的测试:

def main():
    bc = blockchain()
    bc.new_genesis_block()
    bc.add_block('send 1 btc to b')
    bc.add_block('send 2 btc to b')
    for block in bc:
        print(block)
if __name__ == "__main__":
    main()

输出:

block(_block_header=blockheader(timestamp='1548150457.22', hash_merkle_root='', prev_block_hash='', hash='f91f638a9a2b4caf241112d3bc92c9168cc9d52207a5580b3a549ed5343e2ed3', nonce=none, height=0))
block(_block_header=blockheader(timestamp='1548150457.22', hash_merkle_root='', prev_block_hash='f91f638a9a2b4caf241112d3bc92c9168cc9d52207a5580b3a549ed5343e2ed3', hash='d21570e36f0c6f75c112d98416ca4ffae14e5cf02492bea5a7f8c398c1d458ca', nonce=none, height=1))
block(_block_header=blockheader(timestamp='1548150457.22', hash_merkle_root='', prev_block_hash='d21570e36f0c6f75c112d98416ca4ffae14e5cf02492bea5a7f8c398c1d458ca', hash='9c78f38ec78a0d492a27e69ab04a3e0ba07d70d31a1ef96d581e8198d9781bc0', nonce=none, height=2))

总结

我们创建了一个非常简单的区块链原型:它仅仅是一个数组构成的一系列区块,每个块都与前一个块相关联。真实的区块链要比这复杂得多。在我们的区块链中,加入新的块非常简单,也很快,但是在真实的区块链中,加入新的块需要很多工作:你必须要经过十分繁重的计算(这个机制叫做工作量证明),来获得添加一个新块的权力。并且,区块链是一个分布式数据库,并且没有单一决策者。因此,要加入一个新块,必须要被网络的其他参与者确认和同意(这个机制叫做共识(consensus))。还有一点,我们的区块链还没有任何的交易!

参考:
[1] basic-prototype

[2] 完整实现源码

以上就是python区块链基本原型简版实现示例的详细内容,更多关于python区块链基本原型的资料请关注其它相关文章!

《python区块链基本原型简版实现示例.doc》

下载本文的Word格式文档,以方便收藏与打印。